期刊文献+

高斯叠代法研究相控阵非线性声场 被引量:1

Study of the acoustic nonlinear field generated from a phased array using Gaussian superposition technique
下载PDF
导出
摘要 相控阵在聚焦超声治疗应用中不可避免地受到非线性影响,提出了采用高斯叠代法计算相控阵的非线性声场。在该方法中,利用预设焦点参数并应用伪逆矩阵算法得到阵元的激励参数;然后将阵元近似拟合成一组高斯声束的叠加,通过高斯声束叠代计算非线性声场。数值计算中以64阵元一维相控阵为研究对象;线性条件下,高斯叠代法结果与菲涅耳积分结果的误差低于0.5%,验证了该方法的可行性;单焦点及双焦点模式的相控阵非线性声场结果表明非线性效应能提高焦点聚焦性能,并且非线性效应与激励声压及激励频率成正比。 A numerical approach is developed to calculate the nonlinear sound field generated from a phased array based on the superposition technique of Gaussian beams.The parameters of the phased array elements are first estimated from the focal parameters using the inverse matrix algorithm;Then the elements are expressed as a set of Gaussian functions; Finally,the nonlinear sound field can be calculated using the superposition technique of Gaussian beams.A 64×1 phased array is performed in the numerical simulation.In the linear case,the difference between the results of the Gaussian superposition technique and the Fresnel integral is less than 0.5%,which verifies the feasibility of the approach.In the nonlinear case,the nonlinear fields of single-focus and double-focus modes are calculated.The results reveal that the nonlinear effects can improve the focusing performance,and the nonlinear effects are related with the source pressures and the excitation frequencies.
出处 《声学学报》 EI CSCD 北大核心 2013年第4期440-444,共5页 Acta Acustica
基金 国家科技部973计划(2011CB707900) 国家自然科学基金(81127901 10974093 11174141 11104140 11161120324) 江苏省自然科学基金(BE2011110 BK2011543) 中央高校基本科研业务费专项资金(1103020402 1116020410 1112020401) 江苏高校优势学科建设工程资助项目
关键词 非线性影响 相控阵 叠代法 高斯 声场 非线性效应 焦点参数 数值计算 Acoustic field measurement Gaussian beams Inverse problems
  • 相关文献

参考文献2

二级参考文献13

  • 1Hamilton M F and Blackstock D T 1998 Nonlinear Acoustics (New York: Academic Press).
  • 2Wen J J and Breazeale M A 1988 J Acoust. Soc. Am. 831752.
  • 3Ding D, Shui Y, Lin J and Zhang D 1996 J Acoust. Soc.Am. 100 727.
  • 4Ding D 2000 J. Acoust. Soc. Am. 108 2759.
  • 5Zhang D, Lu R R and Gong X F 2002 Chin. Phys. Lett.18 1085.
  • 6Zhang D, Gong X F and Zhang B 2002 J. Acoust. Soc.Am. 111 45.
  • 7Zhang D, Liu X Z and Gong X F 2003 Chin. Phys. Lett.20 1088.
  • 8Sha K, Yang J and Gan W S 2003 IEEE Trans. Ultrason.Ferroelect. Freq. Control. 50 890.
  • 9Zhang Y, Liu J Q and Ding D S 2002 Chin. Phys. Lett.19 1825.
  • 10Kamakura T, Tani M and Kumamoto Y 1994 Acustica 80332.

共引文献30

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部