期刊文献+

听觉频域掩蔽效应的自适应β阶贝叶斯感知估计语音增强算法 被引量:5

Adaptiveβ-order perceptually motivated speech enhancement algorithm based on frequency-domain auditory masking
下载PDF
导出
摘要 为了在噪声抑制和语音失真中之间寻找最佳平衡,提出了一种听觉频域掩蔽效应的自适应β阶贝叶斯感知估计语音增强算法,以期提高语音增强的综合性能。算法利用了人耳的听觉掩蔽效应,根据计算得到的频域掩蔽阈自适应调整β阶贝叶斯感知估计语音增强算法中的β值,从而仅将噪声抑制在掩蔽阈之下,保留较多的语音信息,降低语音失真。并分别用客观和主观评价方式,对所提出的算法的性能进行了评估,并与原来基于信噪比的自适应β阶贝叶斯感知估计语音增强算法进行了比较。结果表明,频域掩蔽的β阶贝叶斯感知估计方法的综合客观评价结果在信噪比为-10 dB至5 dB之间时均高于基于信噪比的自适应β阶贝叶斯感知估计语音增强算法。主观评价结果也表明频域掩蔽的β阶贝叶斯感知估计方法能在尽量保留语音信息的同时,较好的抑制背景噪声。 Aimed to reach a compromise between noise suppression and speech distortion,an adaptiveβ-order perceptually motivated speech enhancement algorithm based on frequency-domain auditory masking to improve speech enhancement performance is proposed.The algorithm applies auditory masking effect.Theβvalue in the algorithm is adjusted adaptively according to the calculated frequency-domain masking threshold so that the noise is suppressed just under the threshold.In this way,the algorithm could maintain more speech information and reduce speech distortion. The performance of the algorithm was evaluated by subjective and objective measurements respectively,and was compared to that of adaptiveβ-order perceptually motivated speech enhancement algorithm based on signal to noise ratio. Results showed that when the SNR is between—10 dB and 5 dB the objective measurement results of the adaptiveβ-order perceptually motivated speech enhancement algorithm based on frequency-domain auditory masking is higher than that of the comparing algorithm.Subjective measurement results also showed that the adaptiveβ-order perceptually motivated speech enhancement algorithm based on frequency-domain auditory masking can suppress background noise well while saving speech information as much as possible.
出处 《声学学报》 EI CSCD 北大核心 2013年第4期501-508,共8页 Acta Acustica
基金 国家自然科学基金资助项目(60970136)
关键词 语音增强算法 听觉掩蔽效应 自适应调整 估计方法 贝叶斯 感知 频域 噪声抑制 Algorithms Frequency domain analysis Signal to noise ratio
  • 相关文献

参考文献3

二级参考文献29

  • 1卜凡亮,王为民,戴启军,陈砚圃.基于噪声被掩蔽概率的优化语音增强方法[J].电子与信息学报,2005,27(5):753-756. 被引量:16
  • 2陶智,赵鹤鸣,龚呈卉.基于听觉掩蔽效应和Bark子波变换的语音增强[J].声学学报,2005,30(4):367-372. 被引量:39
  • 3Wu Hongwei,Wu Zhenyang.SPEECH ENHANCEMENT USING CONSTRAINED SPECTRAL AMPLITUDE SUBTRACTION BASED ON NONCAUSAL A PRIORI SNR[J].Journal of Electronics(China),2006,23(6):937-942. 被引量:3
  • 4Thomson D J. Spectrum estimation and harmonic analysis. Proc. IEEE, 1982; 70(9): 1055--1096
  • 5Hu Y, Loizou P C. Incorporating a psychoacoustical model in frequency domain speech enhancement. IEEE Signal Processing letters, 2004; 11(2): 270--273
  • 6Cappe O. Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor. IEEE Trans. on Speech and Audio Processing, 1994; 2(2): 345-- 349
  • 7Virag N. Single channel speech enhancement based on masking properties of the human auditory system. IEEE Trans. Speech and Audio Processing, 1999; 7(2): 126--137
  • 8Gustafsson S, Jax P, Vary P. A novel psychoacoustically motivated audio enhancement algorithm preserving background noise characteristics. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 1998:397--400
  • 9Johnston J D. Transform coding of audio signal using perceptual noise criteria. IEEE J. Select. Areas Commun., 1988; 6(2): 314--323
  • 10Manolakis D G, Lngle V K, Kogon S M. Statistical and adaptive signal processing. 北京:清华大学出版社, 2003: 246-255

共引文献14

同被引文献24

  • 1赵鹤鸣,葛良,陈雪勤,俞一彪.基于声音定位和听觉掩蔽效应的语音分离研究[J].电子学报,2005,33(1):158-160. 被引量:16
  • 2赵彩华,刘琚,孙建德,闫华.基于小波变换和独立分量分析的含噪混叠语音盲分离[J].电子与信息学报,2006,28(9):1565-1568. 被引量:14
  • 3孙颖,张雪英.基于高斯小波滤波器的语音识别特征提取方法[J].太原理工大学学报,2007,38(2):146-149. 被引量:2
  • 4徐舜,陈绍荣,刘郁林.基于非线性时频掩蔽的语音盲分离方法[J].声学学报,2007,32(4):375-381. 被引量:9
  • 5Naqvi S M,Wang W.Multimodal(audio-visual)source separation exploiting multi-speaker tracking,robust beamforming and time-frequency masking[J].IET Signal Processing,2012,6(5):466-477.
  • 6郭海燕.基于稀疏分解的单通道混合语音分离算法研究[D].南京邮电大学通信与信息工程学院,2010.
  • 7Zhao Xiaojia,Shao Yang,Wang DeLiang.CASAbased robust speaker Identification[J].IEEE Transactions on Audio Speech and Language Processing,2012,20(5):1608-1616.
  • 8Wang Yu,Lin Jiajun,Chen Ning,et al.Improved monaural speech segregation based on computational auditory scene analysis[EB/OL].[2014-04-02].http:∥asmp.eurasipjournals.com/content/2013/1/2,2013-02.
  • 9催玮玮.基于麦克风阵列的声源定位与语音增强方法研究[D].北京:清华大学电子工程系,2008.
  • 10Araki S,Makino S,Mukai R,et al.Equivalence between frequency domain blind source separation and frequency domain adaptive null beam formers[C]∥Proc Eurospeech,Aalborg,Denmark.[s.n.],2001:2595-2598.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部