期刊文献+

风电场超短期风功率预测问题研究 被引量:7

Study on Very Short-Term Power Forecasting of Wind Farm
下载PDF
导出
摘要 以河北省某实际风电场为例,选取风电机组历史功率数据、风速以及数值天气预报的风速和风向作为输入因子,采用人工神经网络法对风电场超短期功率预测问题进行研究。研究结果显示,输入因子的差异性对风功率预测结果影响较大。另外,风电机组历史数据对功率预测结果的影响随时间增加而减小,进行3 h以上风电场功率预测时预测结果精度在很大程度上依赖数值天气预报数据精度。 Taking a wind farm in Hebei Province as case study, the very short-term forecasting of wind power is studied by using artificial neural network method, in which, the historical output of wind turbine, actual wind speed and the wind speed and direction obtained from Numerical Weather Prediction (NWP) are taken as input factors. The results show that the difference between input factors has greater impact on wind power prediction, the impact of historical output of wind turbine on wind power prediction is gradually decreased with the increase of operation time, and the forecasting accuracy of wind power in next 3 h and more mainly depends on the accuracy of NWP data.
出处 《水力发电》 北大核心 2013年第7期96-99,共4页 Water Power
关键词 超短期功率预测 人工神经网络法 风力发电 very short-term power forecasting , artificial neural network wind power
  • 相关文献

参考文献3

  • 1GIEBEL G, BROWNSWORD R, KARINIOTAKIS G. The state-of- the-art in short term prediction of wind power: a literature overview [R]. Project ANEMOS, Deliverable Report DI.1, 2003.
  • 2SOMAN S, ZAREIPOUR H, MALIK O, et al. A review of wind power and wind speed forecasting methods with different time Horizons [C l//42nd North American Power Symposium ( NAPS ). Arlington, Texas, USA, 2010: 1-8.
  • 3王红芳,王志勇,王霁雪,易跃春,赵建春.风电场风能资源评估几个关键问题分析[J].水力发电,2012,38(2):81-82. 被引量:12

二级参考文献4

  • 1GB/T18710-2002风电场风能资源评估[S].
  • 2水利水电规划设计总院.中国风电标准汇编与建设成果集[G].北京:中国水利水电出版社,2009.
  • 3内蒙古电力勘测设计院.华能内蒙古乌拉特中旗乌兰伊力更1号风电场项目可行性研究报告[R].2009.
  • 4GB/T18709-2002风电场风能资源测量方法[S].

共引文献11

同被引文献46

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部