期刊文献+

一种自适应码书模型背景更新算法 被引量:1

Adaptive Codebook Model Background Update Algorithm
下载PDF
导出
摘要 因背景更新过程中运动信息不足,造成在处理缓慢移动目标和只有局部运动目标时常常发生误判,为解决上述问题,通过提取运动目标的空间整体信息,提出了一种自适应的码书模型背景更新算法。该方法通过对运动目标空间信息变化进行分析,寻找前景中潜在背景,然后联合像素时域统计信息,得到真正的背景模型。实验结果表明,该算法可以快速适应背景变化,能明显减少对运动信息不足目标的误判,同时保证目标检测的完整性。 Codebook model is a widely used method for video object detection and its performance is dependent on the quality of background model. Existing update algorithm can't work well when the object motion is sparse and insufficient. They lead to misjudgments in processing slow-moving objects and only the local moving object. To solve the problem,a new method was presented. The method gets the moving object spatial information and then joint pixel time-domain statistical information to complete background update. Experimental results show that this algorithm not only adapts to environ- mental changes but also can handle the limited object motion and ensure the integrity of the moving object.
出处 《电视技术》 北大核心 2013年第13期186-190,共5页 Video Engineering
基金 国家自然科学基金项目(50977077) 陕西省科技研究发展计划工业攻关项目(2011K09-46 2012K06-49) 西安市科技计划项目(CXY1119 CX1258⑤ CX1258⑥) 陕西省教育厅科研计划项目(12JK0508) 西安市碑林区应用技术研发项目(GX1209)
关键词 码书模型 背景更新 运动信息不足 codebook background update limited motion information
  • 相关文献

参考文献11

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2STAUFFER C, GRIMSON W. Learning patterns of activity using real time tracking [ J ]. IEEE Trans. Pattern Analysis and Machine Intelli- gence,2000,22(8) :747-767.
  • 3ELGAMMAL A, HARWOOD D, DAVIS L. Non-parametric model for background subtraction [ C ]//Proc. the 6th European Conference on Computer Vision, Part II. London :Springer-Verlag,2000:751-767.
  • 4KIM K,CHALIDABHONGSE T H,HARWOOD D,et al. Real-time fore- ground-background segmentation using codebook model [ J ]. Real-Time Imaging,2005,11 (3) : 167-256.
  • 5HE1KKILA M,PIETIKAINEN M. A texture-based method for modeling the background detecting moving objects[ J ]. IEEE Trans. Pattern Analy- sis and Machine Intelligence,2006,28(4 ) :656-662.
  • 6徐成,田峥,李仁发.一种基于改进码本模型的快速运动检测算法[J].计算机研究与发展,2010,47(12):2149-2156. 被引量:15
  • 7李波,袁保宗.基于码书和纹理特征的运动目标检测[J].信号处理,2011,27(6):912-918. 被引量:4
  • 8LIU Feng,GLEICHER M. Learning color and locality cues for moving ob- ject detection and segmentation[ C]//Proc. CVPR. Miami. [ S. 1. ] : IEEE Press,2009:320-327.
  • 9KUNTIMAD G, RANGANATH H S. Perfect image segmentation using pulse coupled neural networks[ J]. IEEE Trans. Neural Networks, 1999, 10(3 ) :591-598.
  • 10徐正光,鲍东来,张利欣.基于递归的二值图像连通域像素标记算法[J].计算机工程,2006,32(24):186-188. 被引量:71

二级参考文献71

  • 1张修军,郭霞,金心宇.带标记矫正的二值图象连通域像素标记算法[J].中国图象图形学报(A辑),2003,8(2):198-202. 被引量:44
  • 2刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4Cutler R,Davis L.View-based detection[C]//Proc of Int Conf on Pattern Recognition.Piscataway,NJ:IEEE,1998:495-500.
  • 5Wren C,Azabayejani A,Darrel L,et al.Pfinder:Real-time tracking of the human body[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 6Horprasert T,Harwood D,Davis L.A statistical approach for real-time robust background subtraction and shadow detection[C]//Proc of ICCV'99 Frame-Rate Workshop.Piscataway,NJ:IEEE,1999.
  • 7Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking[C]//Proc of IEEE Conf Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,1999.
  • 8Elgammal,Harwood D,Davis L.Non-parametric model for background subtraction[G]//LNCS 1834.Berlin:Springer,2000:751-767.
  • 9Kim K,Chalidabhongse T H,Harwood D,et al.Background modeling and subtraction by codebook construction[C]//Proc of the IEEE Int Conf on Image Processing.Piscataway,NJ:IEEE,2004:3061-3064.
  • 10Kim K,Chalidabhongse T H,Harwood D,et al.Real-time foreground-background segmentation using codebook model[J].Real-Time Imaging,2005,11(3):167-256.

共引文献252

同被引文献18

  • 1HAINES T S F,XIANG T.Background subtraction with Dirichlet process mixture models[J].IEEE transactions on pattern analysis and machine intelligence,2014,36(4):670-683.
  • 2KOLEINI M,AHMADZADEH M R,SADRI S.A new efficient method to characterize dynamic textures based on a twophase texture and dynamism analysis[J].Pattern recognition letters,2014,45(2):217-225.
  • 3SHU G,DEHGHAN A,SHAH M.Improving an object detector and extracting regions using superpixels[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition.Portland:IEEE,2013:3721-3727.
  • 4KIM W,KIM C.Background subtraction for dynamic texture scenes using fuzzy color histograms[J].IEEE signal processing letters,2012,19(3):127-130.
  • 5MUMTAZ A,COVIELLO E,LANCKRIET G R G,et al.Clustering dynamic textures with the hierarchical em algorithm for modeling video[J].IEEE transactions on pattern analysis and machine intelligence,2013,35(7):1606-1621.
  • 6WANG S J,YAN W J,LI X,et al.Micro-expression recognition using dynamic textures on tensor independent color space[C]//Proceedings of 2014 22nd International Conference on Pattern Recognition.Stockholm,Sweden:IEEE,2014:4678-4683.
  • 7CHAN A B,VASCONCELOS N.Modeling,clustering,and segmenting video with mixtures of dynamic textures[J].IEEE transactions on pattern analysis and machine intelligence,2008,30(5):909-926.
  • 8CHAN A B,VASCONCELOS N.Counting people with low-level features and Bayesian regression[J].IEEE transactions on image processing,2012,21(4):2160-2177.
  • 9LIN L,XU Y,LIANG X,et al.Complex background subtraction by pursuing dynamic spatio-temporal models[J].IEEE transactions on image processing,2014,23(7):3191-3202.
  • 10TIAN Y L,SENIOR A,LU M.Robust and efficient foreground analysis in complex surveillance videos[J].Machine vision and applications,2012,23(5):967-983.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部