期刊文献+

Hilbert空间K-Fusion框架的构造 被引量:2

Constructions for K-Fusion Frame in Hilbert Spaces
原文传递
导出
摘要 给出Hilbert空间中K-fusion框架的多种构造方法,包括利用一个K-fusion框架的合成算子去构造另一个K-fusion框架,利用两个fusion-Bessel序列及有界线性算子K去构造K-fusion框架.最后利用关于两个fusion-Bessel序列的有界线性算子S(VW)去构造新的K-fusion框架. We give kinds of methods to construct K-fusion frames in Hilbert spaces, including that we use the synthesis operator of a K-fusion frame to construct another K-fusion frame, and we use two fusion-Bessel sequences and a bounded linear operator K to construct K-fusion frame. In the end we use a bounded linear operator Svw with respect to two fusion-Bessel sequences to construct new K-fusion frames.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第4期433-440,共8页 Acta Mathematica Sinica:Chinese Series
基金 天元基金(11226099) 福建省自然科学基金(2012J01005) 省教育厅资助科技项目(JA11100) 福州大学科技发展基金(2012-XQ-29 2012-XY-21) 科研启动项目(022410)
关键词 fusion框架 K-fusion框架 合成算子 fusion-Bessel序列 fusion frame K-fusion frame synthesis operator fusion-Bessel sequence
  • 相关文献

参考文献21

  • 1Benedetto J. J., Powell A. M., Yilmaz O., Second order sigma-delta quantization of finite frame expansions, Appl. Comp. Harm. Anal., 2006, 20: 126-148.
  • 2Csazza P., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 3Casazza P. G., Kutyniok G., Frames of subspaces, in wavelets, frames and operators theory, Amer. Math. Soc., 2004: 87-113.
  • 4Casazza P. G., Kutyniok G., Robustness of fusion frames under erasures of subspaces and of local frame vectors, Contemm Math., 2008, 464: 149-160.
  • 5Casazza P. G., Kutyniok G., Li S., Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 2008, 25(1): 114-132.
  • 6Chan R. H., Riemenschneider S. D., Shen L., et al., Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 2004, 17:91 115.
  • 7Christensen O., An Introduction to Frames and Riesz Bases, Birkhuser, Boston, 2003.
  • 8Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 1271 1283.
  • 9Douglas R. G., On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 1966, 17(2): 413-415.
  • 10Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部