摘要
称T∈B(H)有广义Kato分解,若存在一对T的闭的不变子空间(M,N)使得H=M⊕Ⅳ,其中T|_M为上半Fredholm算子且具有非负的指标,T|_N是幂零的本文利用算子的广义Kato分解性质,研究了Weyl型定理在紧摄动下的稳定性.此外还研究了2×2上三角算子矩阵的Weyl型定理在紧摄动下的稳定性.
An operator T ∈ B(H) is said to admit a generalized Kato decomposition, if there exists a pair of T-invariant closed subspaces (M| N) such that H=M ⊕ N, the restriction T|M is upper semi-Fredholm with ind(T|M) ≤ 0 and TIjv is nilpotent. In this paper, using the property of generalized Kato decomposition of T E B(H), we investigate the stability of the Weyl type theorem under compact perturbations. Also, we characterize 2 × 2 upper triangular operator matrices for which the Weyl type theorem is stable under compact perturbations.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2013年第4期469-478,共10页
Acta Mathematica Sinica:Chinese Series
基金
陕西师范大学中央高校基本科研业务费专项资金资助项目(GK201301007)
关键词
Weyl型定理
紧摄动
广义Kato分解
上三角算子矩阵
Veyl type theorem
compact perturbations
generalized Kato decompo-sition
the upper triangular operator matrices