期刊文献+

拟对称极小的齐次完全集

Quasisymmetrically Minimal Homogeneous Perfect Sets
原文传递
导出
摘要 本文用质量分布原理,证明了由有界正整数序列定义的Hausdorff维数为1的齐次完全集是一维拟对称极小的. In this paper, using the mass distribution principle, we show that the homogeneous perfect set of Hausdorff dimension 1, defined by a bounded sequence of positive integers is minimal for 1-dimensional quasisymmetric maps.
作者 肖映青
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第4期527-536,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11126194 11071059) 湖南省自然科学基金资助项目(12JJB002) 湖南大学中央高校专项基金资助项目(531107040317)
关键词 齐次完全集 拟对称映射 拟对称极小集 homogenous perfect set quasisymmetric map quasisymmetrically mini-mal set
  • 相关文献

参考文献10

  • 1Dai Y. X., Wen Z. X., Xi L. F., Xiong Y., Quasisymmetrically minimal Moran sets and Hausdorff dimension, Ann. Acad. Sci. Fenn. Math., 2011, 36: 139-151.
  • 2Faconer K. J., Fractal Geometry: Mathematical Foundations and Applications, John Wiley Son, 1990.
  • 3Hakobyan H., Cantor sets minimal for quasisymmetric maps, J. Contemp. Math. Anal., 2006, 41: 5-13.
  • 4Heinonen J., Lectures on Analysis in Metric Spaces, Universitext, Springer-Verlag, New York, 2001.
  • 5Hu M. D., Wen S. Y., Quasisymmetrically minimal uniform cantor sets, Topology Appl., 2008, 155:515- 521.
  • 6Mackay J. M., Tyson J. T., Co,formal Dimension: Theory and Application, University Lecture Series, vol. 54, Amer. Math. Soc., Providence, RI, 2010.
  • 7Staples S., Ward L., Quasisymmetrically thick sets, Ann. Acad. Sci. Feen. Math., 1998, 23: 151-168.
  • 8Wen Z. Y., Mathematical Foundations of Fractal Geometry, Shanghai Scientific and Technological Education Publishing House, Shanghai, 2000.
  • 9Wen Z. Y., Wu J., Hausdorff dimension of homogeneousperfect sets, Acta Math. Hungar., 2005, 107: 35-44.
  • 10Wu J. M., Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math., 1993, 18: 77-91.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部