期刊文献+

有限域上一类多项式组的正交性 被引量:2

On the Orthogonality of a Class of Polynomial Systems over Finite Fields
原文传递
导出
摘要 研究了有限域上一类特殊的多项式组,通过特征和给出了若干判定其正交性的充分条件,从而可以用来构建这种类型的正交多项式组. We investigate a class of special polynomial systems over finite fields, and obtain some sufficient conditions for orthogonality via character sums, which can be used to construct orthogonal systems of this type.
作者 魏志军 曹炜
机构地区 宁波大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第4期575-582,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10901101) 宁波市自然科学基金资助项目(2012A610034) 宁波大学王宽诚幸福基金资助项目
关键词 有限域 正交多项式组 置换多项式 特征和 finite field orthogonal system permutation polynomial character sum
  • 相关文献

参考文献3

二级参考文献13

  • 1Jian Jun JIANG,Guo Hua PENG,Qi SUN,Qi Fan ZHANG.On Polynomial Functions over Finite Commutative Rings[J].Acta Mathematica Sinica,English Series,2006,22(4):1047-1050. 被引量:4
  • 2Frisch, S.: When are weak permutation polynomials strong? Finite Fields Appl., 1, 437-439 (1995)
  • 3Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Math. and Appl., Vol. 20, Addision-Wesley,Reading MA, 1983
  • 4Zhang, Q. F.: Witt Rings and Permutation Polynomials. Algebra Colloquium, to appear
  • 5Bay, S.: Sur les systems cycliques de triples de Steiner differents pour N premier (ou puissance denombre)de la forme 6n + 1, I. Comment. Math. Helv., 2, 294-305 (1930); II-VI. Comment. Math. Helv., 3, 22-42,122-147, 307-325 (1931)
  • 6Brand, N.: Isomorphisms of cyclic combinatorial objects. Discrete Math., 78, 73-81 (1989)
  • 7Palfy, P. P.: Isomorphism problem for relational structures with a cyclic automorphism. European J.Combin., 8, 35-43 (1987)
  • 8Kempner, A. J.: Polynomials of several variables and their residue systems. Trans. Amer. Math. Soc., 27,287-298 (1925)
  • 9Carlitz, L.: Functions and polynomials (mod p^n). Acta Arith., 9, 67-78 (1964)
  • 10Rosenberg, I. G.: Polynomial functions over finite rings. Glasnik Mat., 10, 25-33 (1975)

共引文献5

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部