期刊文献+

素数k次方和的非线性型的整数部分 被引量:1

The Integral Part of a Nonlinear Form with k Powers of Primes
原文传递
导出
摘要 运用Dawmport-Heilbronn方法证明了:如果μ_1…,μ_r是不全为负的非零实数,至少一个μ_j(1≤j≤r)是无理数,k,m,r是正整数,k≥4,r≥2^(k-1)+1,则存在无穷多素数p_1,…,p_r,p,使得[μ_1p_1~k+…+μ_rp_r^k]=mp.特别地,[μ_1p_1~k+…+μ_rp_r^k]可表示无穷多素数. Using Davenport Heilbronn method, this paper shows that if μ_1…,μ_r are non-zero real numbers, not both negative, at least one ofμ_1…,μ_r is irrational, and k, m, r are positive integers satisfyingk≥4,r≥2^(k-1)+1, then there exist infinitely many primes p_1,…,p_r,p,such that [μ_1p_1~k+…+μ_rp_r^k]=mp.. In particular,[μ_1p_1~k+…+μ_rp_r^k] represents infinitely many primes.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第4期605-612,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11071070) 河南省教育厅自然科学研究计划(2011B110002)
关键词 素数变量 丢番图逼近 Davenport-Heilbronn方法 prime variables diophantine approximation~ Davenport-Heilbronn method
  • 相关文献

参考文献5

  • 1Danicic I., On the integral part of a linear form with prime variables, Canadian J. Math., 1966, 18: 621-628.
  • 2Davenport H., Heilbronn H., On indefinite quadratic forms in five variables, Journal of London Math. Soc., 1946, 21: 185-193.
  • 3Harman G., Trigonometric sums over primes I, Mathematika, 1981, 28: 249-254.
  • 4Li W. P., Wang T. Z., The integral part of a nonlinear form with three squares of primes, Chinese Annals of Mathematics, 2011, 32(6): 753-762.
  • 5Vaughan R. C., Diophantine approximation by prime numbers (I), Proc. London Math. Soc., 1974, 28: 373-384.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部