期刊文献+

带Hrmander型核的单边奇异积分算子的加权不等式 被引量:2

On Weighted Inequalities for One-Sided Singular Integrals with Hrmander Type Kernels
原文传递
导出
摘要 研究带Hrmander型核的单边奇异积分算子T^+的加权有界性.首先利用Coifman和Fefferman的好λ不等式给出T^+加权L^p(1<P<∞)有界性的一个新证明.与Lorente-Riveros-Toorre的方法相比,新方法克服了Fefferman-Stein不等式等一些经典的技术困难.利用单边C-Z分解还得到T^+的加权弱(1,1)有界性.特别地,我们证明上述加权有界性结论是最佳的. The one-sided version of singular integral operators T+ with HSrmander type kernels are studied. We give a new proof of the weighted Lp (1 〈 p 〈 co) bounded- ness for T+ by adopting the well known good A inequality of Coifman and Fefferman's to one-sided case. As we will see in the paper, we avoid some classical techniques comparing with Lorente-Riveros-Toorre's theorem, such as Fefferman Stein inequal- ity. The corresponding weighted weak type (1, 1) estimates are also obtained by using one-sided C-Z decomposition. Particularly, we show that the weighted boundedness is sharp in some sense.
作者 石少广
机构地区 临沂大学理学院
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第4期613-624,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11271175) 山东省自然科学基金资助项目(ZR2012AQ026)
关键词 奇异积分算子 CALDERON-ZYGMUND核 单边A_p权 L^q-Hormander条件 singular integral operator Calderdn-Zygmund kernel one-sided Ap weight Lq-HSrmander condition
  • 相关文献

参考文献34

  • 1Aimar H., Forzani L., Martln-Reyes F., On weighted inequalities for one-sided singular integrals, Proc. Amer. Math. Soc., 1997, 125: 2057-2064.
  • 2Bernardis A., Lorente M., MartfmReyes F., et al., Differences of ergodic averages for Cesro bounded oper- ators, Q. J. Math., 2007, 58(2): 137-150.
  • 3Bernardis A., Lorente M., Martln-Reyes F., et al., Differential transforms in weighted spaces, J. Fourier Anal. Appl., 2006, 12(1): 83-103.
  • 4Coifman R., Fefferman C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 1974, 51: 241-250.
  • 5Cordoba A., Fefferman C., A weighted norm inequality for singular integrals, Studia Math., 1976, ST: 97-101.
  • 6Cruz-Uribe D., Martell J., P@rez C., Extrapolation results for Ac weights and applications, To appear in J. Funct. Anal., 2004, 213(2): 412-439.
  • 7Dunford N., Schwartz J., Convergence almost everywhere of operator averages, Proc. Nat. Acad. Sci. USA, 1955, 41: 229-231.
  • 8Duoandikoetxea J., Fourier Analysis, Graduate Studies in Math., Vol. 29, Amer. Math. Soc., Providence, Rhode Island, 2001.
  • 9Duoandikoexea J., Rubio de Francia J., Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 1986, 84: 541-561.
  • 10Fefferman R., A note on a singular integral, Proc. Amer. Math. Soc., 1979, 74: 266-270.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部