摘要
研究了部分信息下,投资组合效用最大化的问题.在风险资产(股票)价格满足跳扩散过程,对同时该过程中的系数受马尔科夫调制参数的影响.通过运用非线性滤波技术,将部分信息的问题转化完全信息的问题.并运用随机优化与倒向随机微分方程得到在均值-方差准则的最优投资策略.
In a market with incomplete information we consider the portfolio for unility maximizing investors. The risk asset(stock) price process satifies a Jump-Diffusion process where the coefficient is driven by a Markov chain of finite states. By using the nonlinear filtering technology, the incomplete information problem is transformed into a complete information problem. The main result of this paper is that we drive the approximation of the optimal trading strategy under the mean-variance problem.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第12期124-130,共7页
Mathematics in Practice and Theory
基金
陕西省教育厅科研计划项目(2013JK0594)
陕西省自然科学基金(2011JM1007)