期刊文献+

一种求解机组组合问题的内点半定规划GPU并行算法 被引量:6

GPU parallel algorithm of interior point SDP for unit commitment
下载PDF
导出
摘要 针对内点法求解机组组合问题的半定规划(SDP)模型时大规模线性方程组计算时间太长的问题,提出一种基于图形处理器(GPU)的Krylov子空间并行算法。该算法采用预条件处理的拟最小残差法(QMR法),并以矩阵分块技术为基础。在CSR存储格式下使用GPU实现Incomplete Cholesky并行预处理矩阵的计算。通过对不同规模线性方程组的计算分析表明,与传统的Ch01eskv直接法相比,QMR并行算法具有速度和存储优势.可获得良好的并行加速比。10-100机6个系统的仿真结果也表明,该SDP并行内点法在减少计算时间的同时可求得近似最优解。 Because the time consumption is too heavy when the interior point algorithm is used to solve the SDP(SemiDefinite Programming) model of unit commitment, the Krylov subspace parallel algorithm based on GPU(Graphic Processing Unit) is proposed,which,based on the matrix sectioning technology and in CSR storage format,applies the preconditioned QMR(Quasi-Minimal Residual) method to calculate the parallel Incomplete Cholesky preconditioning matrix by GPU. Analysis of the calculations for linear equation sets of different sizes shows that,with better parallel speedup ratio,QMR parallel algorithm is superior to the traditional Cholesky direct method in speed and units also show that,an approximate optimal solution can be obtained with less computing time by the SDP parallel interior point method.
出处 《电力自动化设备》 EI CSCD 北大核心 2013年第7期126-131,138,共7页 Electric Power Automation Equipment
基金 国家高技术研究发展计划(863计划)资助项目(2011-AA05A105)~~
关键词 机组组合 半定规划 GPU QMR 不完全Cholesky分解 并行算法 Krylov 线性规划 unit commitment semidefinite programming GPU QMR Incomplete Cholesky decomposition parallel algorithms Krylov linear programming
  • 相关文献

参考文献19

  • 1FUENTES-LOYOLA R,QUINTANA V H. Medium-term hydrother- mal coordination by semidefinite programming[J]. IEEE Trans on Power Systems,2003,18(4) : 1515-1522.
  • 2MADRIGAL M ,QUINTANA V H. Semidefinite programming re- laxations for { 0,1 t power dispatch problems [ C ] J/IEEE Power Engineering Society Summer Meeting,1999. Edmonton,AL,Canada: [ s.n. ], 1999 : 697-702.
  • 3韦化,吴阿琴,白晓清.一种求解机组组合问题的内点半定规划方法[J].中国电机工程学报,2008,28(1):35-40. 被引量:36
  • 4张晓花,赵晋泉,陈星莺.基于自适应系统优化算法的机组组合[J].电力自动化设备,2009,29(10):93-97. 被引量:2
  • 5谢国辉,张粒子,舒隽,苏济归.基于分层分枝定界算法的机组组合[J].电力自动化设备,2009,29(12):29-32. 被引量:6
  • 6夏俊峰,杨帆,李静,郑秀玉.基于GPU的电力系统并行潮流计算的实现[J].电力系统保护与控制,2010,38(18):100-103. 被引量:35
  • 7张宁宇,高山,赵欣.基于GPU的机电暂态仿真细粒度并行算法[J].电力系统自动化,2012,36(9):54-60. 被引量:14
  • 8JALILI-MARANDI V,DINAVAHI V. Large-scale transient stabi- lity simulation on graphics processing units[C]//IEEE Power & Energy Society General Meeting,2009. PES'09. Calgary,Canada: [s.n. ] ,2009 : 1-6.
  • 9PES'09. Calgary,Canada: [s.n. ] ,2009 : 1-6. JALILI-MARANDI V,DINAVAHI V. SIMD-based large-scale tran- sient stability simulation on the graphics processing unit [J]. IEEE Trans on Power Systems,2010,25(3):1589-1599.
  • 10JALILI-MARANDI V,DINAVAHI V. SIMD-based large-scale tran- sient stability simulation on the graphics processing unit [J]. IEEE Trans on Power Systems,2010,25(3):1589-1599.

二级参考文献87

共引文献105

同被引文献90

  • 1李文沅,周家启,谢开贵,熊小伏.在输电线和变电站组合联结网络中的非同调现象[J].中国电机工程学报,2006,26(14):7-11. 被引量:11
  • 2赵子臣,相年德,夏清,张伯明.应用启发式与逐步动态规划法进行机组最优组合[J].清华大学学报(自然科学版),1997,37(1):57-60. 被引量:14
  • 3西安交通大学.电力系统计算[M].北京:水利电力出版社,1978..
  • 4Chow E, Saad Y. Approximate sparse iterations. SIAM Journal (3) :995-1023 inverse preconditioners via sparse- on Scientific Computing, 1998; 19.
  • 5Helfenstein R, Koko J. Parallel preconditioned conjugate gradient al- gorithm on GPU. Journal of Computational and Applied Mathematics, 2011 ;236( 15 ) :3584-3590.
  • 6Commer M, Newman G A. New advances in three-dimensional con- trolled - sourc electromagnetic inversion. Geophysical Journal Inter- national, 2011 ;172(5) : 513-535.
  • 7ONGSAKUL W,PETCHARAKS N.Unit commitment by enhanced adaptive Lagrangian relaxation[J].IEEE Transactions on Power Systems,2004,19(1):620-628.
  • 8KAZARLIS S,BAKIRTZIS A,PETRIDIS V.A genetic algorithm solution to the unit commitment problem[J].IEEE Transactions on Power Systems,1996,11(1):83-92.
  • 9MANTAWY A H,ABDEL M Y L,SELIM S Z.Unit commitment by tabu search[J].IEE Proceedings-Generation,Transmission and Distribution,1998,145(1):56-64.
  • 10BENDERS J F.Partitioning procedures for solving mixed integer variables programming problems[J].Numerische Mathematik,1962,4(1):238-252.

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部