期刊文献+

基于最优三轴姿态测定算法的舰载惯导粗对准方法 被引量:10

Coarse alignment method based on optimized three-axis attitude determination algorithm for shipboard SINS
下载PDF
导出
摘要 针对舰载条件的捷联惯导粗对准问题,提出了一种简单可行的最优粗对准方法。根据双矢量定姿的原理,分别将两个观测矢量之一作为基准,通过两次三轴姿态测定算法得到两个姿态矩阵,然后根据观测矢量的方差特性加权得到精度最优的姿态阵。阐述了三轴姿态测定算法的基本原理,分析了最优三轴姿态测定算法与基于高斯马尔科夫估计的三轴姿态测定算法的统一性,解析了基于最优三轴姿态测定算法的舰载惯导系统粗对准方案,并对传统三轴姿态测定算法和最优三轴姿态测定算法进行了应用比较。蒙特卡洛50个样本的仿真结果表明,采用最优三轴姿态测定算法明显优于传统三轴姿态测定算法,可使得东向、北向和天向姿态误差角均值分别为4.78,9.21和0.29,标准差分别为0.11,0.07和1.08,水平失准角最大值9.37,方位失准角最大值2.8,能够有效确定出载体的粗略姿态,在此基础上能更好实现该状态下的舰载惯导精对准。 A simple and feasible optimized coarse alignment method is introduced to solve the problems of coarse alignment for shipboard SINS on swing base. According to double-vector attitude determination theory, the direction cosine matrix between two coordinates can be determined by two unparallel vectors, and the two matrices can be generated by three-axis attitude determination (TRIAD) when processing one measured vector first and then when processing the other measured vector first. The optimized attitude matrix can be acquired by weighted vector-sum of observation vectors based on their variance characteristics. The basic principle of attitude determination for TRIAD is put into a nutshell. The optimized TRIAD and TRIAD algorithm based on Gauss-Markov estimation is discussed. The coarse alignment method of shipboard SINS based on optimized TRIAD is analysed and compared with TRIAD algorithm. The monte-carlo simulations with 50 sample show that the mean values of misalignment angle along east, north and upside direction are -4.78?, 9.21?and 0.29° respectively, and the standard deviations are 0.11?, 0.07? and 1.08°, respectively. The Max. of level misalignment angle and azimuth misalignment angle are 9.37? and 2.8°, respectively. The coarse alignment based on optimized TRIAD can determine rough attitude and guarantee the accurate alignment of SINS.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2013年第3期294-297,共4页 Journal of Chinese Inertial Technology
基金 海军航空工程学院研究生创新基金资助(20130503002)
关键词 三轴姿态测定算法 最优估计 高斯马尔科夫估计 捷联惯导系统 粗对准 重力积分 three-axis attitude determination algorithm optimized estimation Gauss-Markov estimation strapdown inertial navigation system coarse alignment gravity integration
  • 相关文献

参考文献11

  • 1Shuster M D. Deterministic three-axis attitude determination [J]. Journal of the Astronautical Sciences, 2004, 52(3): 405-405.
  • 2Lee Seon-Ho, Ahn Hyo-Sung, Yong Ki-Lyuk. Three-axis attitude determination using incomplete vector observa- tions[J]. Acta Astronautica, 2009, 65(7-8): 1089- 1093.
  • 3De Marina H G, Pereda F J, Giron-Sierra J M, Espinosa F. UAV attitude estimation using unscented Kalman filter and TRIAD[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4465-4474.
  • 4Yeon Fuh Jiang. Error analysis of analytic coarse alignment methods[J]. IEEE Transactions on A. E., 1998, 34(1): 334-337.
  • 5秦永元,严恭敏,顾冬晴,郑吉兵.摇摆基座上基于信息的捷联惯导粗对准研究[J].西北工业大学学报,2005,23(5):681-684. 被引量:131
  • 6Gu Dongqing, E1-Sheimy N, Hassan T. Coarse alignment for marine SINS using gravity in the inertial frame as a reference[C]//IEEE Position, Location and Navigation Symposium 2008. Monterey, CA, 2008: 961-965.
  • 7Shuster M D, Oh S D. Three-axis attitude determination from vector observations[J]. Journal of Guidance and Control(S0731-5090), 1981, 4(1): 70-77.
  • 8Bar-Itzhack I Y, RHarman R R. Optimized TRIAD algorithm for attitude determination[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1): 208-211.
  • 9Markley F L. Optimal attitude matrix from two vector measurements[J]. Journal of Guidance, Control and Dynamics, 2008, 31(3): 765-768.
  • 10王炯琦,周海银,吴翊.基于最优估计的数据融合理论[J].应用数学,2007,20(2):392-399. 被引量:22

二级参考文献17

  • 1Napolitano F, Gaiffe T, Cottreau Y, Loret T. PHINS-the First High Performances Inertial Navigation System Based on Fiber Optic Gyroscopes. 9th Saint Petersburg International Conference on Integrated Navigation Systems, 2002, 296~304.
  • 2Savage P G. Strapdown Inertial Navigation System Algorithm Design, Part 1: Attitude Algorithms. AIAA Journal of Guidance, Control and Dynamics, 1998, 21(1): 19~28.
  • 3Savage P G. Strapdown Inertial Navigation System Algorithm Design, Part 2: Velocity and Position Algorithms. AIAA Journal of Guidance, Control and Dynamics, 1998, 21(2): 208~221.
  • 4Hall D L. Mathematical Techniques in Multi-sensor Data Fusion[M]. Boston, London: Artech House, 1992.
  • 5Jacqueline Le Moigne,James Smith. Image Registration and Fusion in Remote Sensing for NASA[C]. In: Proceedings of 2000 International Conference on Information Fusion. France : Paris, 2000,375- 382.
  • 6Lawrence A, Klein. Sensor and Data Fusion Concepts and Applications[M]. Was hington:SPIE Optical Engineering Prees, 1999.
  • 7Li X R, Zhu Yunmin, Han Chongzhao. Unified Optimal Linear Estimation Fusion:Part 1: Unified Models and Fusion Rules[C]. Proc,2000 International Conf. On Information Fusion, July 2000.
  • 8Horn R A. Matrix Analysis[M]. Cambridge :The University Press, 1985.
  • 9James Berger O. Statistical Decision Theory and Bayesian Analysis[M]. New York: Springer-Verlag, 1985.
  • 10Lee T H, Ra W S, Tae, Yoon T S, et al. Robust filtering for linear discrete-time systems with parametric uncertainties: A Kein space estimation approach[C]// Proceedings of the 42^nd IEEE Conference on Decision and Control. December 2003: 1285-1290.

共引文献153

同被引文献50

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部