摘要
设X是n维非奇异射影簇,L是X上的丰富线丛,KX是X的典范丛,f:X→Y是以KX+mL为支撑处子的双有理收缩态射(m≥1),F是f的任一纤维.文中证明了如果dimF=m+1,那么F的每个不可约分支同构于射影空间m+1或者超二次曲面m+1.
Let X be a nonsingular projective variety of dimension n, L be an ample line bundle over X and Kx be the canonical bundle over X. Let fiX--+ Y be the birational contraction from X to Y with supporting divisor Kx+mLfor somem〉l, Fbe any generic fiber of f. If dimF=m+l, then each irreducible component of Fis isomorphic to projective space P+1 or hyperquadric Q^m+1
出处
《长春理工大学学报(自然科学版)》
2013年第1期161-163,共3页
Journal of Changchun University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(61070165)
关键词
射影簇
丰富线丛
收缩态射
纤维
Projective variety
ample line bundle
contraction morphism
fiber