期刊文献+

沟道长度及源/漏区掺杂浓度对MOS-CNTFET输运特性的影响

Influence of Channel Length and Source/Drain DopingContent on Transport Characteristics of MOS-CNTFET
下载PDF
导出
摘要 碳纳米管场效应晶体管电子输运性质是其结构参量(纵向结构参量:如CNT的直径、栅介质层厚度、介质介电常数等;横向结构参量:如沟道长度、源/漏区掺杂浓度等)的复杂函数。本论文在量子力学非平衡格林函数理论框架内,通过自洽求解泊松方程和薛定谔方程以得到MOS-CNTFET电子输运特性。在此基础上系统地研究了沟道长度及源/漏区掺杂浓度对MOS-CNTFET器件的漏极导通电流、关态泄漏电流、开关态电流比、阈值电压、亚阈值摆幅及双极性传导等输运性质的影响。结果表明:当沟道长度在15 nm以上时,上述各性质受沟道长度的影响均较小,而导通电流、开关态电流比及双极性传导特性与源/漏掺杂浓度的大小有关,开关态电流比与掺杂浓度正相关,导通电流及双极性导电特性与源/漏掺杂浓度负相关。当沟道长度小于15 nm时,随沟道长度减小,漏极导通电流呈增加趋势,但同时导致器件阈值电压及开关电流比减小,关态漏电流及亚阈值摆幅增大且双极性传导现象严重,短沟道效应增强,此时,通过适当降低源/漏掺杂区掺杂浓度,可一定程度地减弱MOS-CNTFET器件短沟道效应。 We analytically addressed the transport characteristics of Mos-like carbon nantube field effect transistor (MOS-CNTFET). The transport behavior of the MOS-CNTFET was modeled and calculated by solving the self-consistent Poison and Schrodinger equations within the non-equilibrium framework of Green's function. The influence of the channel length and source/drain doping content on the transport characteristics, including on-and off-current, on-off current ratio, threshold voltage swing, and ambipolar conductance, was evaluated. The simulated results show that the channel length and doping contents considerably affect the transport behavior. For example, the transport behavior depends weakly on a chan- nel length longer than 15 nm,but fairly strong on the doping contents to a varied degree.As the channel length decreased from 15 nm,the on-current slowly increased,accompanied by the decreases of threshold voltage and on-off current ratio, the increases of off-state leakage current and sub-threshold swing, and a more serious ambipolar conduction or short chan- nel effect. We suggest that an appropriate reduction of the source/drain doping content effectively weaken the short chan- nel effect of MOS-CNTFET devices.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2013年第6期535-541,共7页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(批准号:10974075 21171081) 辽宁省科技厅自然科学基金项目(批准号:20082050) 辽宁省教育厅高等学校科研基金(批准号:L2010152)资助的课题
关键词 非平衡格林函数 MOS—CNTFET 输运特性 短沟道效应 Non-equilibrium Green' s Function, MOS-CNTFET, Transport characteristics, Short channel effect
  • 相关文献

参考文献18

  • 1Ijima S Helical.Microtubes of Graphitic Carbon[J].Nature,1991,354:56-58.
  • 2Zhou C W,Kong J,Yenilmez E,et al.Modulated ChemicalDoping of Individual Carbon Nanotube[J].Science,1999,290:1552-1555.
  • 3Chen BaeHorng,Wei JengHua,Lo PoYuan,et al.A CarbonNanotube Field Effect Transistor with Tunable Conduction-Type by Electrostatic Effects[J].Solid-State Electronics,2006,50:1341-1348.
  • 4Bachtold A,Hadley P,Nakanishi T,et al.Logic CircuitsBased on Carbon Nanotubes[J].Physica E,2003,16:42-46.
  • 5Roberto Marani,Gennaro Gelao,Anna Gina Perri.Modellingof Carbon Nanotube Field Effect Transistors Oriented toSPICE Software for A/D Circuit Design[J].MicroelectronicJournal.2011.
  • 6DurkopT,Getty S A,Cobas E,et al,Extraordinary Mobility inSemiconducting Carbon Nanotube[J].NanoLett,2004,4(1):35-39.
  • 7Zhou X,Park J Y,Huang S,et al.Band Structure,PhononScattering,and the Performance Limit of Single-Walled Car-bon Nanotube Transistors[J].Phys Rev Lett,2005,95:146805-1-146805-4.
  • 8Javey A,Guo J,Wang Q,et al.Ballistic Carbon NanotubeField-Effect Transistors[J].Nature,2003,424:654-657.
  • 9Javey A,Kim H,Brink M,et al.High-K Dielectrics for Ad-vanced Carbon-Nanotube Transistors and Logic Gates[J].Na-ture Mater,2002,1:241-246.
  • 10Heinze S,Tersoff J,Martel R,et al.Carbon Nanotubes asSchottky Barrier Transistors[J].Phys Rev Lett,2002,89:106801-1-106801-106801-5.

二级参考文献23

  • 1王晓峰,黄如,傅云义,张兴.基于碳纳米管的晶体管及其集成的研究进展[J].功能材料与器件学报,2004,10(2):273-278. 被引量:7
  • 2陈长鑫,张亚非.碳纳米管构筑多沟道场效应晶体管[J].中国科学(E辑),2005,35(11):1156-1165. 被引量:3
  • 3张振宇,王胜,梁学磊,陈清.双底栅双壁碳纳米管场效应晶体管的构建和特性研究[J].真空科学与技术学报,2006,26(5):353-357. 被引量:2
  • 4Yao Z, Kane C L, Dekker C. High-Field Electrical Transport in Single Wall Carbon Nanotubes [ J ]. Phys Rev Letters, 2000,84:2491 - 2495.
  • 5Sander J Tans, Alwin R, Cees Dekker, et al. Room Tempera- ture Transistor Based on a Single Carbon Nanotube [ J ]. Na- ture, 1998,393:49 - 51.
  • 6Martel R, Schmidt T, Shea H R, et al. Single-and Multi-Wall Carbon Nanotube Field-Effect Transistors[ J ]. Applied Physics Letters, 1998,73(17) :2447 - 2449.
  • 7Shea H R, Martel R, Hertal T, et al. Manipulation of Carbon Nanotubes and Properties of Nanotube Field Effect Transistors and Rings [J]. Microelectronic Engineering, 1999,46:101 - 104.
  • 8I_eft Roschier,Jari Penttila, Michel Martin, et al. Single Elec- tron Transistor Made of Multiwalled Carbon Nanotube Using Scanning Probe Manipulation [J]. Appl Phys l.etts,2001,75 : 728 - 730.
  • 9Franklin R N,Wang Q,Tombler T W. Integration of Suspend- ed Carbon Nanotube Arrays Into Electronic Devices and Elec- tromechanical Systems [ J]. Appl Phys Letts, 2002,81 : 913 - 915.
  • 10Yang Wei-Chang, Yang Tsung-Yeh, Yew Tri-Rung. Growth of Self-Aligned Carbon Nanotube for Use as a Field-Effect Tran- sistor Using Cobalt Silicide as a Catalyst[J]. Carbon, 2007, 45:1679 - 1685.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部