摘要
Carbon black supported ultra-high loading silver nanoparticle catalyst (Ag/CB) was prepared by a modified ethylene glycol reduction method, using ethylene glycol as the reducing agent and sodium hydroxide as the pH adjusting agent. The X-ray diffraction, thermogravimetry and scanning electron microscopy characterizations showed that the Ag nanoparticles crystallized with a face-centered cubic structure and were densely stacked on the CB surface without aggregation, despite such a small average size (ca. 10 nm) and an ultra-high loading mass (392 wt.%). The electrochemical evaluation based on cyclic voltammetry, chronoamperometry and polarization tests revealed that the ultra-high loading Ag/CB catalyst possessed a superior electrocatalytic activity for the oxidation of hydrazine, via a diffusion-limited process and a 4-electron transfer pathway. Moreover, the chronoamperometry response on an electrode modified with this ultra-high loading Ag/CB catalyst exhibited a promising application for determination of hydrazine, due to a broad linear calibration ranging from 50 to 800 μM, a high sensitivity of 0.03795 A/ M and a low detection limit of 3.47 μM.
Carbon black supported ultra-high loading silver nanoparticle catalyst (Ag/CB) was prepared by a modified ethylene glycol reduction method, using ethylene glycol as the reducing agent and sodium hydroxide as the pH adjusting agent. The X-ray dif- fraction, thermogravimetry and scanning electron microscopy characterizations showed that the Ag nanoparticles crystallized with a face-centered cubic structure and were densely stacked on the CB surface without aggregation, despite such a small av- erage size (ca. 10 nm) and an ultra-high loading mass (392 wt.%). The electrochemical evaluation based on cyclic voltammetry chronoamperometry and polarization tests revealed that the ultra-high loading Ag/CB catalyst possessed a superior electrocat- alytic activity for the oxidation of hydrazine, via a diffusion-limited process and a 4-electron transfer pathway. Moreover, the chronoamperometry response on an electrode modified with this ultra-high loading Ag/CB catalyst exhibited a promising ap- plication for determination of hydrazine, due to a broad linear calibration ranging from 50 to 800μM, a high sensitivity of 0.03795 μA/μM and a low detection limit of 3.47 μM.
基金
financially supported by the National Natural Science Foundation for Distinguished Young Scholars (51125007)