期刊文献+

一种渐晕纹理图像自动分类方法 被引量:2

An Automatic Classification Approach to Vignetting Texture Images
下载PDF
导出
摘要 传统纹理分类方法对光照比较敏感,不均匀的光照分布(如渐晕)会在很大程度上影响纹理分类的准确率.为解决此类问题,针对渐晕纹理图像,提出了一种纹理图像自动分类方法;在利用小波包提取纹理指数算法的基础上,根据渐晕系数自动调整各小波包分解系数,从而消除了渐晕现象对纹理特征指数的影响,最终提高了纹理分类的准确率.仿真实验结果表明,利用此方法对渐晕纹理图像进行分类,准确率有了较大程度的提高,取得了比较理想的分类效果. Since traditional texture classification methods are usually sensitive to lighting condition, non-uniform light distribution, such as vignetting, will greatly reduce the classification accuracy of texture images. To solve this problem, this paper presented a new approach to automatic classification of vignetting texture images. By extracting texture features with the wavelet packet decomposition algorithm, vignetting coefficients were utilized to adjust the wavelet packet coefficients obtained, thus eliminating the effect of vignetting on texture features, and consequently improving texture classification accuracy. Experimental results show that the approach proposed in this paper can significantly improve classification accuracy and achieve ideal texture classification effect.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2013年第6期526-530,共5页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61271326 61002030)
关键词 纹理分类 特征指数提取 渐晕模型 小波包变换 支持向量机 texture classification feature index extraction vignetting model wavelet packet transform supportvector machine
  • 相关文献

参考文献2

二级参考文献19

  • 1陈仁文.小波变换在输油管道漏油实时监测中的应用[J].仪器仪表学报,2005,26(3):242-245. 被引量:24
  • 2丁幼亮,李爱群,缪长青.基于小波包能量谱的结构损伤预警方法研究[J].工程力学,2006,23(8):42-48. 被引量:80
  • 3曲志刚,靳世久,周琰,曾周末.基于RBF网络的油气管道侵入事件识别方法研究[J].化工自动化及仪表,2007,34(3):58-61. 被引量:5
  • 4Pakhomov A,Goldburt T.New seismic unattended small module for foot-step dctection[C]//Proc of SPIE:Unattended Ground,Sea,and Air Sensor Technologies and Applications VⅢ,_United States:SPIE.Orlando,FL,USA,2006,6231:623108.
  • 5Zhang Guicai,Chen Jin,Li Fucai,et al.Extracting gear fault features using maximal bispectrum[J].Key Engineering Materials,2005,293/294:167-174.
  • 6J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 7N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 8Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 9Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.
  • 10S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414.

共引文献244

同被引文献9

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部