期刊文献+

微量ZrC对Mo-Ti-Zr合金显微组织与性能的影响 被引量:2

Effects of trace ZrC on properties and microstructure of Mo-Ti-Zr alloys
下载PDF
导出
摘要 采用粉末冶金方法制备出Mo-Ti-Zr-ZrC合金,研究了微量ZrC对Mo-Ti-Zr合金性能和显微组织的影响。结果表明,微量ZrC的添加,使得Mo-Ti-Zr合金的相对密度和抗拉强度均得到提高,并且在ZrC添加量为0.4%(质量分数)时,合金强度达到最高,较Mo-Ti-Zr合金提高了35.1%。添加的ZrC颗粒可以与坯体内的氧发生反应,生成含氧的第二相颗粒,起到减少孔隙、提高强度的效果,并且弥散分布的第二相颗粒对合金具有弥散强化效果,从而使合金强度显著提高。 The effects of adding trace ZrC on the mechanical properties and microstructure of Mo-TbZr-ZrC alloys fabricated by powder metallurgy process were studied. The results indicated that the relative density and tensile strength of Mo-Ti-Zr-ZrC alloy at room temperature were effectively enhanced by adding trace ZrC. And its tensile strength reaches its highest level, which is 35.1~~ higher than the Mo-Ti-Zr alloy, when the ZrC addition is 0. 4~ (mass fraction). The added ZrC particles reacted with oxygen in the green body and generated second-phase particles that contain oxygen, which can eliminate holes and improve strength. In addition, the dispersive second-phase particles can play a role of strengthening dispersion, which makes the strength of the alloys significantly improved.
出处 《中国科技论文》 CAS 北大核心 2013年第6期521-524,共4页 China Sciencepaper
基金 国家杰出青年科学基金资助项目(50925416) 高等学校博士学科点专项科研基金资助项目(20090162110032)
关键词 Mo-Ti-Zr-ZrC合金 抗拉强度 第二相颗粒 弥散强化 Mo-Ti-Zr-ZrC alloy tensile strength second-phase particles dispersion strengthening
  • 相关文献

参考文献14

  • 1Fan J L, Lu MY, Cheng H C, et al. Effect of alloying elements Ti , Zr on the property and microstructure of molybdenum [J]. Int J Refract Metals Hard Mater, 2009, 27(1): 78-82.
  • 2Majumdar S, Kapoor R, Raveendr S, et al. A study of hot deformation behavior and microstructural characterization of Mo-TZM alloy [J]. J Nucl Mater, 2009, 385 (3): 545-551.
  • 3Inoue T, Hiraoka Y, Sukedai E, et al. Hardening behavior of dilute Mo- Ti alloys by two-step heat-treatment [J]. IntJ Refract Metals Hard Mater, 2007, 25(2): 138-143.
  • 4Miller M K, Kenik E A, Mousa M S, et al. Improvement in the ductility of molybdenum alloys due to grain boundary segregation [J]. Scripta Mater, 2002, 46: 299-303.
  • 5Satoru Y, Yutaka H. Influence of heating in vacuum on low-temperature fracture behavior of carburized Mo- Ti alloys[]]. International Journal of Refractory Metals and Hard Materials, 1996, 14(5/6) :325-333.
  • 6范景莲,成会朝,卢明园,黄伯云,田家敏.微量合金元素Ti、Zr对Mo金性能和显微组织的影响[J].稀有金属材料与工程,2008,37(8):1471-1474. 被引量:44
  • 7Filacchioni G, Casagrande E, Angelis U D, et al. Effect of strain rate on the tensile properties of TZM and Mo-5% Re [J]. Journal of Nuclear Materials, 2002, 307-311 (Part1) :705-709.
  • 8Cockeram B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0, 5pct titanium-0.1 pet zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum [J]. Mater Sci Eng A, 2006, 418: 120-136.
  • 9Wang J S, Wang Y M, Zhou M L. Anti-bombing insensitivity life of molybdenum cathode doped with La2O3 andY203[J]. Mater Sci EngB, 2006, 128: 211- 215.
  • 10Kitsunai Y, Kurishita H, Kuwabara T, et al. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0. 2wt.% TiC addition [J]. J Nucl Mater, 2005,346(2/3): 233-243.

二级参考文献28

  • 1曹维成,刘静,任宜霞.掺杂不同微量元素对钼材性能的影响[J].稀有金属快报,2006,25(8):29-32. 被引量:21
  • 2Zheng J H, Bogaerts W F, Vancoillie I, et al. Initial corrosion evaluation of molybdenum based alloys for the NET divertor design[J]. Fusion Engineering and Design, 1991, 18:179-183.
  • 3Sharma I G, Chakraborty S P, Suri A K. Preparation of TZM alloy by aluminothermic smelting and its characterization[J]. Journal of Alloys and Compounds, 2005, 393: 122-128.
  • 4Mrotzek T, Hoffmann A, Martin U. Hardening mechanisms and recrystallization behaviour of several molybdenum alloys[J].International Journal of Refractory Metals & Hard Materials, 2006, 24: 298-305.
  • 5Cockeram B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.5pct titanium-0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum fiat products[J]. Materials Science and Engineering, 2006, 418: 120-136.
  • 6Hiroaki K, Yuji K, Tamaki S, et al. Development of Mo alloys with improved resistance to embrittlement by recrystallization and irradiation[J]. Journal of Nuclear Materials, 1996, 223/227: 557-564.
  • 7Cockeram B V. Measuring the fracture toughness of molybdenum-0.5 pet titanium-0.1 pet zirconium and oxide dispersion-strengthened molybdenum alloys using standard and subsized bend specimens[J]. Metallurgical and Materials Transactions A, 2002, 33A: 3685-3707.
  • 8Scibetta M, Chaouadi R, Puzzolante J L. Analysis of tensile and fracture toughness results on irradiated molybdenum alloys, TZM and Mo-5%Re[J]. Journal of Nuclear Materials, 2000, 283/287: 455-460.
  • 9Fumio M, Kensuke S. Mechanical properties and neutron-irradiation effects in the welds of molybdenum and its alloys[J]. Journal of Nuclear Materials, 1991, 179/181: 592-595.
  • 10Takeshi I, Yutaka H, Masahiro N, et al. Effects of Ti addition on carbon diffusion in molybdenum[J]. Journal of Alloys and Compounds, 2006, 414: 82-87.

共引文献47

同被引文献23

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部