期刊文献+

气浮过程中油滴与气泡相互作用的数值模拟 被引量:2

Numerical simulation of the interaction between bubbles and oil drops in the gas floating process
下载PDF
导出
摘要 分析了分散相液滴在水中的受力情况和上升速度的影响因素,采用Fluent软件与VOF多相流模型模拟了气泡在水中的上升过程,研究了影响气泡变形和上升速度的参数。研究发现:表面张力是维持气泡形状的主要因素;气泡的上升速度主要受黏度比和密度比影响:黏度比越大,上升越慢,密度比越大,上升越快。随后,模拟了气浮过程中气泡和油滴在水中相互作用的过程,对油滴在气泡表面的扩散情况进行了研究,研究表明:只有当热力学扩散系数为正时,油滴才能在气泡表面扩散,形成稳定的黏附关系,由气泡带着油滴上升;油滴与气泡的粒径差别过大时,两者无法形成稳定的黏附关系。 Firstly, the force situation and the factors influencing the ascensional velocity of the dispersed phase droplets in the wa- ter were analyzed. The software fluent and VOF multiphase flow model were used to simulate the rising process of bubbles in the water. The results of deformation and rising velocity of bubbles show that bubbles rely on the surface tension to maintain shape, and the viscosity ratio and density ratio have less impact on deformation. The rising velocity is mainly affected by viscosity ratio and density ratio~ the higher viscosity ratio leads to the lower rising velocity while the greater density ratio results in higher veloc- ity. Furthermore, the interaction between bubbles and oil droplets in the gas floating process in the water was simulated. The diffusion conditions of oil droplets on the bubble surface have been analyzed. It is shown that a only when the thermodynamic dif fusion coefficient is positive, could a stable adhesion be formed, and could bubbles rise with oil droplets; if the size difference be tween bubbles and oil droplets is too large, no stable adhesion could be formed.
出处 《中国科技论文》 CAS 北大核心 2013年第6期525-529,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20090007110005) 国家自然科学基金资助项目(51209217) 中国石油大学(北京)科研基金资助项目(YJRC-2013-10)
关键词 化工过程机械 含油废水 油水分离 气体浮选法 热力学扩散系数 表面张力 chemical process equipment oily wastewater oil-water separation flotation thermodynamic diffusion coefficient surface tension
  • 相关文献

参考文献16

  • 1Casaday A L. Advances in flotation unit design for produced water treatment [CJI 1 Proceedings of the Production Operations Symposium. Texas, USA: Society of Petroleum Engineers, 1993: 581-590.
  • 2Hawes R I, Dawe R A, Evans R N. The release of solution gas from waterflood residual oil [J]. SPE J, 1997, 2(4): 379-388.
  • 3魏飞,张雅杰.气浮法处理含油废水的试验研究[J].电力环境保护,2005,21(1):34-36. 被引量:15
  • 4Jameson G J. Physics and hydrodynamics of bubbles [C]// The scientific basis of £loculation. NATO ASI Series, 1983: 53-77.
  • 5魏在山,徐晓军,宁平,徐金球.气浮法处理废水的研究及其进展[J].安全与环境学报,2001,1(4):14-18. 被引量:47
  • 6van den Broek W MGT, van der Zande M J, Janssen P H. Downhole Dehydration vs. Reduction of Oil Droplet Break-Up[C]// Proceedings - SPE Production Operations Symposium. Oklahoma City, USA: Society of Petroleum Engineers, 2001: 315-320.
  • 7武博,郝宗睿,陈涛,吴大转.水下气泡运动的数值模拟[J].中国科技论文在线,2010,5(8):647-650. 被引量:13
  • 8Ramirez J A, Davis R H. Microflotation of fine oil droplets by small air bubbles: Experiment and theory [J].Separ Sci Tech, 2001, 36(1): 1-15.
  • 9Chun Y, Tadeusz D, Li D Q, et al. Masliyah. measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method [J]. J Colloid Interf Sci, 2001, 24(3): 128-135.
  • 10陈红,张坚.高效气浮的技术关键及对含油废水的净化效果[J].钢铁,2001,36(5):66-68. 被引量:5

二级参考文献30

共引文献86

同被引文献40

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部