期刊文献+

铂基三元合金的可控制备与表征 被引量:2

Controlled synthesis and characterization of Pt based tri-metallic alloy
下载PDF
导出
摘要 采用共还原法制备了金-银二元合金纳米胶体,然后以制备得到的金-银二元合金Ag4Au纳米胶体为前驱体,加入氯铂酸,利用银和铂离子之间的置换反应制备出一系列铂含量不同的铂-银-金三元合金纳米胶体。紫外吸收光谱测试结果表明,铂-银-金三元合金纳米胶体的最大吸收峰波长介于Ag4Au(414nm)和PtAu(436nm)的最大吸收峰之间,而且这些合金都有且仅有1个吸收峰,表明产物为均相三元合金。同时铂-银-金三元合金最大吸收峰波长与Pt/(Pt+Au)物质的量比呈线性关系,随铂含量增加最大吸收峰波长向长波方向移动。TEM结果表明合金产物胶体颗粒分布均匀,基本无团聚现象,平均粒径在8~10nm之间。HRTEM结果中出现的晶面间距0.232nm和0.204nm分别与合金的(111)和(200)晶面对应。 Using the alloy of Ag4 Au synthesized by co reduction method and chloroplatinic acid as the precursor, the Pt-Ag-Au al- loys have been prepared through the replacement reaction. UV absorption spectra showed that the maximum absorption wave length of the Pt Ag-Au alloys ranges between Ag4 Au (414 nm) and PtAu (436 nm). Moreover, these alloys have only one ab- sorption peak, suggesting that the products are homogeneous ternary alloys, rather than a simple mixture of metals. Meanwhile, the maximum absorption wavelength of the Pt-Ag-Au alloys is linearly related to the substance ratio of Pt/(Pt + Au), and the maximum absorption wavelength will move towards long wave with the increase in the substance ratio. The TEM observation showed that the products were uniform nanoparticles, and the average size is between 8 and 10 nm. The lattice fringes correspond to the spacing of 0. 232 and 0. 204 nm, which match well with the expected d-spacings of the (111) and (200) plane of the alloy, respectively.
出处 《中国科技论文》 CAS 北大核心 2013年第6期576-579,共4页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20090201120053) 山西大同大学博士科研启动经费资助项目
关键词 合金 金-银二元合金 铂-银金三元合金 胶体 alloy Au-Ag bi metallic Pt-Ag Au tri-metallic colloid
  • 相关文献

参考文献17

  • 1Pal A, Shah S, Devi S. Synthesis of Au, Ag and AuAg alloy nanoparticles in aqueous polymer solution [J]. Colloid Surface A-Physicochem Eng Aspects, 2007, 302(1): 51-57.
  • 2Bell A T. The impact of nanoscience on heterogeneous catalysis [J]. Science, 2003, 299(5613): 1688-1691.
  • 3Chen J, Lim B, Lee E r. et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications [J]. Nano Today, 2009, 4 (1) : 81-95.
  • 4Zhao H D, Yu C Z, You H J, et al. A green chemical approach for preparation of Pt.Cu, nanoparticles with a concave surface in molten salt for methanol and formic acid oxidation reactions [J]. J Mater Chem, 2012, 22 (11): 4780-4789.
  • 5Wu J, Zhang J, Peng Z, et al. Truncated octahedral Pt3 Ni oxygen reduction reaction electrocatalysts [J]. J Am Chem Soc, 2010, 132(14): 4984-4985.
  • 6Lim B, Jiang M, Camargo PH C, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction [J].Science, 2009, 324(5932): 1302-1305.
  • 7Yang S, Peng Z, Yang H. Platinum lead nanostructures , formation, phase behavior, and electrocatalytic properties [J]. Adv Funct Mater, 2008, 18(18): 2745- 2753.
  • 8Peng Z, You H, Yang H. Composition-dependent formation of platinum silver nanowires [J]. ACS Nano , 2010, 4(3): 1501-1510.
  • 9Liu Q, Yan Z, Henderson N L, et al. Synthesis of CuPt nanorod catalysts with tunable lengths [J]. J Am Chem Soc, 2009, 131(16): 5720-5721.
  • 10Chen M, Pica T, Jiang Y B, et al. Synthesis and selfassembly of fcc phase FePt nanorods [J]. J Am Chem Soc, 2007, 129(20): 6348-6349.

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部