期刊文献+

基于IBPSO的模拟电路故障特征提取方法 被引量:2

Fault Feature Extraction Method of Analog Circuits Based on IBPSO
下载PDF
导出
摘要 针对有效采样点法提取故障特征时冗余信息多、易造成维数灾等问题,提出利用改进的二进制粒子群算法提取故障特征。研究粒子群优化算法和二进制粒子群优化算法的差异以及在故障特征提取方面存在的不足,通过改进群体极值的更新方式避免搜索结果陷入局部最优。以Sallen-Key带通滤波器为诊断实例,完成9类模拟电路故障模式的特征提取。结果表明:通过该方法进行特征提取可有效降低故障诊断模型的复杂性,与二进制粒子群优化算法相比,该方法在特征维度和诊断准确率上具有明显的优势。 According to the problems such as redundancy information and dimension disaster caused by fault feature extraction of effective sampling point method, put forwards improved binary particle swarm method to extract fault feature. The differences and deficiencies between particle swarm optimization (PSO) algorithm and binary particle swarm optimization (BPSO) algorithm are analyzed. Change swarm extremum update mode to avoid research result to get into local best. Taking Sallen-Key filter as example, realize feature extraction of 9 simulation circuit fault mode. The result shows that the proposed method can effectively reduce the complexity of the fault diagnosis model. Compared with the binary particle swarm optimization algorithm, it has obvious advantages in the feature dimension and diagnostic accuracy.
出处 《兵工自动化》 2013年第6期66-69,共4页 Ordnance Industry Automation
关键词 故障特征提取 二进制粒子群优化算法 模拟电路 fault feature extraction binary particle swarm optimization method analog circuits
  • 相关文献

参考文献7

  • 1Add A K M, Abu E Y. Selection of input stimulus for fault diagnosis of analog circuits using ARMA model[J]. International Journal of Electronics and Communications, 2004, 58(3): 212-217.
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. Perth, Western Australia: In proceedings of the IEEE International Conference on Neural Networks, 1995: 1942-1948.
  • 3Wang Z, Durst G, Eberhart R, et al. Particle Swarm Optimization and Neural Network Application for QSAR[C]. Santa Fe, New Mexico, USA: In Proceedings of 18th International Parallel and Distributed Processing Symposium, 2004: 26-30.
  • 4程杰,李勇,任伟.改进粒子群算法在防空火力分配中的应用[J].兵工自动化,2008,27(4):10-11. 被引量:10
  • 5张凯,赵国荣,姜静.粒子群算法在武器装备保障资源优化中的应用[J].兵工自动化,2010,29(1):20-23. 被引量:4
  • 6Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm, Systems[C]. Piscataway, NJ: In Proceedings of the IEEE International Conference on Systems Man and Cybernetics, 1997: 4104-4109.
  • 7Aminian F, Aminian M, Collins H W, Jr. Analog fault diagnosis of actual circuits using neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 544-550.

二级参考文献14

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2高尚,杨静宇.武器-目标分配问题的粒子群优化算法[J].系统工程与电子技术,2005,27(7):1250-1252. 被引量:55
  • 3玄光男,程润伟.遗传算法与工程优化[M].于歆杰,周根贵译.北京:清华大学出版社,2004:200-201.
  • 4Cheng, R. and M. Gen, Resource constrained project scheduling problem using genetic algorithms, International Journal of Intelligent Automation and SoftComputing[J]. 1997, 3(3): 273-286.
  • 5Eberhart R.C, Kennedy J. A new optimizer using particle swarm theory. Proc. On 6th International symposium on micromachine and human science[C]. Piscataway, NJ: IEEE service center, 1995: 39-43.
  • 6Kennedy J., Eberhart R.C. Particle swarm optimization.Proc IEEE International Conference on Neural Networks[C]. Perth, 1995:1942-1948.
  • 7Shi Yuhui, Eberhart R. A modified particle swarm optimizer[J]. Proc IEEE Int Conf on Evolutionary Computation[C]. Anchorage, 1998: 69-73.
  • 8刑文训 谢金星.现代优化计算方法[M].北京:清华大学出版社,2003.114-128.
  • 9Eberhart R C, Kennedy J.A New Optimizer Using Particles Swam Theory [A]. Sixth International Sympoasjum on Micro Machine and Human Science, Nagoya, Japan, 1995, 39-43.
  • 10张最良,李长生,赵丈志,等.军事运筹学[M].北京:军事科学出版社,2005.

共引文献12

同被引文献27

  • 1汪超,马红卫,胡志坚,蔡勇军,陈丹,孙华伟.基于蚁群系统(ACS)的配电网重构[J].继电器,2006,34(23):35-38. 被引量:8
  • 2林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 3王承,孙秀斌,陈光■,谢永乐.基于神经网络信息融合技术的模拟电路故障诊断[J].电路与系统学报,2007,12(5):25-29. 被引量:9
  • 4Ahmadi H, José R Martí. Mathematical representation of radiality constraint in distribution system reconfiguration problem[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 293-299.
  • 5Samimi Asl T, Jamali S. Optimal capacitor placement size and location of shunt capacitor for reduction of losses on distribution feeders[C]//International Conference on Clean Electrical Power, 2009: 223-226.
  • 6Mwakabuta N, Sekar A. Study of the application of evolutionary algorithms for the solution of capacitor deployment problem in distribution systems[C]//40th Southeastern Symposium on System Theory, 2008: 178-182.
  • 7Mohamed Imran A, Kowsalya M. Optimal distributed generation and capacitor placement in power distribution networks for power loss minimization[C]//International Conference on Advances in Electrical Engineering, 2014:1-6.
  • 8Gallano R J C, Nerves A C. Multiobjective optimization of distribution network reconfiguration with capacitor and distributed generator placement[C]//Tencon IEEE Region 10 Conference, 2014:1-6.
  • 9Farahani V, Sadeghi S H H, Askarian H, et al. Maximum loss reduction by an improved reconfiguration method and capacitor placement[J]. IEEE International Conference on Power & Energy, 2010: 270-275.
  • 10Rani D S, Subrahmanyam N, Sydulu M. Self adaptive harmony search algorithm for optimal capacitor placement on radial distribution systems[C]//International Conference on Energy Efficient Technologies for Sustainability, 2013: 1330-1335.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部