期刊文献+

基于Gabor滤波器和模糊支持向量机的纹理分割

Texture Segmentation Based on Gabor Filter and FSVM
下载PDF
导出
摘要 文章提出基于Gabor多通道滤波器和模糊支持向量机的纹理分割.采用Gabor滤波器提取特征向量,送入FSVM进行分类,并与SVM、RBF神经网络的分割结果做比较.结果表明:FSVM和SVM比RBF神经网络具有较好的泛化性能,训练时间也大大减少.此外,FSVM比SVM分类错误率低,有更强的抵抗噪声能力. In this paper we introduced the theory of FSVM briefly and application in texture segmentation, and discussed in detail the core techniques and algorithms which determine the fuzzy membership based on kernel methods, and comparing its classifying ability with RBF network and SVM. During simulation experiment, Gabor wavelet analysis technique is adopted to extract feature vectors of texture. The results show that FSVM had higher correct recognition rate and shorter training time. Furthermore, FSVM is proved to have stronger ability to resist noise.
作者 赵娟 郑颖
出处 《淮北师范大学学报(自然科学版)》 CAS 2013年第2期20-23,共4页 Journal of Huaibei Normal University:Natural Sciences
基金 淮北师范大学2010年度校青年科研项目(700440)
关键词 纹理分割 GABOR滤波器 模糊支持向量机 texture segmentation Gabor wavelet FSVM
  • 相关文献

参考文献7

  • 1LI S Z. Markov random field modeling in computer vision[M]. Heidelberg: Springer, 1995.
  • 2RANDEN T, HUSOY J H. Filtering for texture classification: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (4) : 291 - 310.
  • 3CHEN C C. Filtering methods for texture discrimination [ J ]. Pattern Recognition Letters, 1999, 20 (8) : 783 - 790.
  • 4VAPNIK V. Statistical learning theory[ M]. New York: John Wiley&Sons, 1998.
  • 5LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13 (2):464 -471 .
  • 6MALLAT S A. Theory for multiresolution signal decomposition[J]. IEEE Trans PAMI, 1989, 11 (4): 675 -693.
  • 7AYANI R, MORADI F, TAN G, et al. Grid - based data management in distributed simulation[M]. Washington: Proceedings of 33rd Annual Simtdation Symposium, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部