摘要
文章提出一种基于小波变换和嵌入式隐马尔可夫模型的人脸识别算法.该算法能降低主成份分析算法在提取人脸特征时容易受光照、人签倾斜角度以及人签表情等外界因素的影响.分析了小波变换算法中影响人脸识别率的关键问题.实验结果表明,提出的算法取得比较好的识别效果.
This paper presents a face recognition algorithm based on wavelet transform and embedded Hidden Markov model. The algorithm analysis algorithm is easily affected by illumination, facial angle and facial expression and other external factors in facial feature extraction to reduce the principal component. Analysis of the impact of some of the key problems of face recognition rate of the wavelet transform algorithm. Experiments show that the proposed algorithm gains good recognition effect.
出处
《淮北师范大学学报(自然科学版)》
CAS
2013年第2期29-32,共4页
Journal of Huaibei Normal University:Natural Sciences
基金
安徽省高等学校省级自然科学研究项目(KJ2013Z325)
关键词
主成份分析
小波变换
模式识别
principal component analysis
wavelet transform
pattern recognition