期刊文献+

一种基于局部不变特征的图像特定场景检测方法 被引量:4

A method of specific image scene detection based on local invariant features
下载PDF
导出
摘要 图像场景的自动检测,对于图像的标注以及语义检索具有非常重要的作用。本文研究根据实际应用的需要,围绕会晤、集会、海滩等八类特定场景图像的检测问题展开。首先对图像进行局部关键点的检测以及SIFT特征描述子的计算,从而提取图像的局部特征,在此基础上基于支撑向量机构建多分类器,进行特征训练,最终获得较为准确的检测结果。实验重点针对分类器核函数的确定以及特征选取策略等问题展开,实验结果表明,采用径向基核函数构建多分类器以及特征点按尺度大小排序取前n位的选取策略可以获得较为准确和鲁棒的特定场景检测结果。本方法在保证满足一定程度场景检测准确率的前提下,具有简单快速的特点,能够满足实际应用的需要。 Automatic image scene detection is very important to image annotation and semantic retrieval.According to the requirement of application,eight specific image scenes such as meeting,mass,beach,etc.were focused on.First,to extract the local features of images,the local key points were detected and reduced,and then the SIFT feature descriptors were calculated.Second,a multi-classifier based on support vector machine was constructed and the features for training were selected to achieve relatively accurate detection results.The experiments were designed to mainly focus on two problems,namely the decision of kernel function of classifier and the strategy of feature selection.Experimental results show that the method can achieve relatively accurate and robust results by using radial basis kernel function to construct classifier and the feature extraction strategy of selecting the top n key points by the scale size order.This method is simple and fast,and can satisfy the actual requirements of application for relatively high precision.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第3期78-83,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60802080)
关键词 局部不变特征 特定场景 场景检测 支撑向量机 多分类器 local invariant feature specific scene scene detection support vector machine multi-classifier
  • 相关文献

参考文献19

  • 1Wang J Z, Jia L, Wiederhold G. Simplicity : semantics-sensitive integrated matching for picture libraries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 ( 9 ) : 947 963, 2001.
  • 2Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2) : 90 -110.
  • 3Qin J, Yung N H C. Feature fusion within local region using localized maximum-margin learning for scene categories [J]. Pattern Recognition, 45:1671 - 1683, 2012.
  • 4Vasconcelos, N, Lippman A. A Bayesian framework for semantic content characterization [C]//Proceedings of International Conference on Computer Vision and Pattern Recognition, 23 -25 Jun 1998, Santa Barbara, CA, USA, 566 -571.
  • 5万华林,Morshed U.Chowdhury.基于支持向量机的图像语义分类(英文)[J].软件学报,2003,14(11):1891-1899. 被引量:34
  • 6Wang J Z, Chen Y. Image categorization by learning and reasoning with Regions [J 1. Journal of Machine Learning Research, 2004:913-939.
  • 7Li J, Wang J Z. Automatic linguistic indexing of pictures by a statistical modeling approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (9): 1075 - 1088.
  • 8Murphy K, Torralba A, Freeman W. Using the forest to see the trees: A graphical model relating features, objects, and scenes [C]//Proceedings of Advances in Neural Information Processing Systems, Cambridge, 2004, MA : MIT Press.
  • 9Fergus F, Fei-Fei F, Perona P, et al. Learning objects categories from google' s image search [C]//Proceedings of 10^th IEEE International Conference on Computer Vision, 2005, 2:1816 - 1823.
  • 10Fei-Fei F, Perona P. A Bayesian hierarchical model for learning natural scene categories [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005,2:524 - 531.

二级参考文献42

  • 1贾自艳,何清,张海俊,李嘉佑,史忠植.一种基于动态进化模型的事件探测和追踪算法[J].计算机研究与发展,2004,41(7):1273-1280. 被引量:59
  • 2张少中,杨南海,王秀坤.贝叶斯网络参数的在线学习算法及应用[J].小型微型计算机系统,2004,25(10):1799-1801. 被引量:9
  • 3Li Fei-fci, Fergus R, Pcrona P. One-shot learning of object catego- ries [J]. IEEE Trans on Pattern and Analysis and Machine Intelli- gence,2006, 28 (4) :594-611.
  • 4Li Fei-fei, Perona P. A bayesian hierarchical model for learning natural scene categories [ C]. Proceeding of the 23rd IEEE Com- puter Society Conference on Computer Vision and Pattern Recogni- tion, San Diego, CA, USA:2005,524-531.
  • 5Fergus R, Li Fei-fei, Perona P,et al. Learning object categories from google's image search [C]. Proceeding of the 10th Interna- tional Conference on Computer Vision (ICCV) ,2005 : 1816-1823.
  • 6Blei D, Ng A, Jordan M. Latent dirichlet allocation [J]. Journal of Machine Learning Research,2003, 3 (4/5) :993-1022.
  • 7Lazebnik S, Schmid C, Ponce J. Beyond bags of fcamres: spatial pyramid matching for recognition natural scene categories [ C]. Proceeding of the 24th IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006,2:2169-2178.
  • 8Lowe D G. Distinctive image features form scale-invariant key- points [ J]. International Journal of Computer Vision, 2004,60 (2) :91-110.
  • 9Dalal N, Triggs B. Histograms of oriented gradients for human de- tection computer [ C]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1 ( 1 ) :886-893.
  • 10Zheng Yan-tao, Zhao Ming, Neo S Y,et al. Visual synset: to- wards a higher-level visual representation [ C]. Proeeeding of the 26th IEEE Conference on Computer Vision and Pattern Recogni- tion, Achorage, Alaska, U. S, 2008.

共引文献39

同被引文献51

  • 1巩应奎,范玉青,吴志方.笔式草图的增量识别[J].北京航空航天大学学报,2006,32(5):621-624. 被引量:1
  • 2Mezaris V, Dimou A, Kompatsiaris I. Lecal invariant feature tracks for high-level video feature extraction. Lecture Notes in Electrical En- gineering, 2013 ; 158(77) :165-180.
  • 3林晓泽.基于轮廓的图像局部不变特征检测算法.重庆:重庆大学,2012.
  • 4Hu Haibo, Lin Xiaoze, Zhang Xiaohong. Detection of local invariant features using contour. Journal and Magazines, 2013; 7 ( 4 ) : 364-372.
  • 5Sun Z B,Wang C H,Zhang L Q,et al.Query-adaptive shape topic mining for hand-drawn sketch recognition[C]∥Proceedings of 20th ACM International Conference on Multimedia.New York:ACM,2012:519-528.
  • 6Hammond T,Logsdon D,Peschel J,et al.A sketch recognition interface that recognizes hundreds of shapes in course-of-action diagrams[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI).New York:ACM,2010:4213-4218.
  • 7Cummings D,Fymat S,Hammond T.Sketch-based interface for interaction with unmanned air vehicles[C]∥Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems,2012.
  • 8Deng W,Wu L D,Yu R H,et al.On-line sketch recognition using direction feature[C]∥Proceedings of Human-Computer Interaction (INTERACT 2013).Heidelberg:Springer Verlag,2013:259-266.
  • 9Delaye A,Liu C L.Contextual text/non-text stroke classification in online handwritten notes with conditional random fields[J].Pattern Recognition,2014,47(3):959-968.
  • 10Malakar S,Das R K,Sarkar R,et al.Handwritten and printed word identification using gray-scale feature vector and decision tree classifier[J].Procedia Technology,2013,10:831-839.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部