期刊文献+

室温下单电子晶体管3种临界尺寸的确定 被引量:1

Determination for three kinds of critical size of single-electron transistor at room temperature
下载PDF
导出
摘要 为使单电子晶体管达到实际应用的地步,开展室温条件下相关研究成为必然。从正统理论出发,推导、计算出室温条件下单电子晶体管能否正常工作的库仑岛临界尺寸:存储器件为6.5nm,逻辑器件为1.5nm;本文还推导和计算出单电子晶体管室温下发生能量量子化效应的临界尺寸:4.7nm,并对这3种临界尺寸进行了验证和分析。另外,通过比较分析本文还得出了室温条件下,所有逻辑器件均必须考虑能量量子化效应,所有存储器件应尽量考虑能量量子化效应的结论。分析结果表明,库仑岛临界尺寸的确定对单电子晶体管的实际应用具有重要意义。 To improve the capability of the single-electron transistor(SET) for the practical application,it is inevitable to make the researches under the condition of room temperature.Initialized from the orthodox theory,this research calculated the critical size of coulomb island of SET which can work normally at room temperature: the memory device is 6.5nm,the logic device is 1.5nm;it also calculated the critical size of coulomb island of SET when the energy quantization effect at room temperature,4.7nm,appeared.Furthermore,it verified and analyzed these two kinds of critical size.In addition,through a comparative analysis,it drew conclusion that all logical devices must consider the energy quantization effect and all memory devices should consider the energy quantization effect at room temperature.The analysis result shows that determination for critical size of coulomb island has important significance for the application of SET.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第3期99-103,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(61170083 61106084) 教育部博士点资助项目(20114307110001) 国家部委资助项目
关键词 单电子晶体管 正统理论 能量量子化 临界尺寸 室温 single-electron transistor orthodox theory energy quantization critical size at room temperature
  • 相关文献

参考文献14

  • 1Likharev K K. Single-electron devices and their applications [J]. Proceedings of the IEEE, 1999, 87(4) : 606 - 632.
  • 2Garner C M, Kloster G, Atwood G, et al. Challenges for dielectric materials in future integrated circuit technologies [J]. Microelectron Reliab. , 2007, 47:937 - 943.
  • 3Nishiguehi K, Fujiwara A, et al. Room- data processing circuit based on single-electron transfer and detection with metal-oxide-semiconductor field-effect transistor technology[J]. Appl. Phys. Lett. , 2006, 88: 183101.
  • 4Rafiq M A, Durrani Z A K, Mizuta H, et al. Roon, temperature single electron charging in single silicon nanochains[J]. J. Appl. Phys., 2008, 103: 053705.
  • 5Averin D V, Odintsov A A. Macroscopic quantum tunneling of the electric charge in small tunnel junctions [J]. Phys. Lett. A, 1989, 140:252-257.
  • 6Averin D V, Dorotkov A N. Correlated single electron tunneling via mesoscopic metal particles: Effects of energy quantum [J]. J. Low Temp. Phys., 1990, 80:173-185.
  • 7Wasshuber C. Computational single-electronics [M]. New York : Springer,2001.
  • 8Korotkov A N, Chen R H, Likharev K K. Possiblle performance of capacitively coupled single-electron tratdistors in digital circuits[J]. J. Appl. Phys., 1995, 78 (4): 2520-2530.
  • 9Chen R H, Likharev K K. Multiple-junction single-electron transistors for digital applications[J]. Appl. Phys. Lett. , 1998, 72 (1): 61 -63.
  • 10Miyaji K, Saitoh M, Hiramoto T. Compact analytical model for room-temperature operating silicon single-electron transistors with discrete quantum levels [J]. IEEE Trans. on Nanotechnology, 2006, 5(3): 167 - 173.

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部