期刊文献+

基于投影矢量的双组播树高效路由数据收集 被引量:7

High-Efficiency Routing Data Collection of Dual Multicast Tree Based on the Projection Vector
下载PDF
导出
摘要 现有的节点数据收集算法复杂度高,与路由结合效果不理想,且不能满足无线传感器网络高效能量的节点数据收集,而压缩感知理论具有容错性好、编码简单的优点。基于压缩感知的特性,提出了一种传感器网络中基于投影矢量的双组播树高效路由数据收集,该算法将贝叶斯压缩感知理论与传感器路由相结合,解决现有算法不能满足传感器对能耗敏感的问题。算法的基本思想首先根据初始观测矢量来寻求能量高效并得到合适路由的最优投影。然后利用节点系数能耗最小与广义矢量的主分量作为目标节点,采用微分熵改变量最大的原则进行求解节点最佳投影系数,最后在Sink与目标节点路由问题上采用正逆向组播树进行路由构造。理论和仿真结果表明在保证能耗的条件下取得了较好的重建仿真效果,对无线传感器通信具有一定的实用价值。 The present node data gathering algorithm is complex,and its routing binding effect is not ideal,and it cannot meet the high energy node data collection of wireless sensor network,whereas compressed sensing theory has the merits of fault tolerance and simple coding.Based on compressed sensing and its merits,the method that high-efficiency routing data collection of dual multicast tree based on the projection vector in sensor networks is proposed.It combines Bayes compressed sensing theory with sensor route that the problem of existing algorithm is solved,that is,the sensor is sensitive to energy consumption.The basic idea of the algorithm is to firstly seek energy efficient and appropriate routing optimal projection according to the initial observation vector,and secondly use the node coefficient of minimum energy consumption and the principal component of generalized vector as the target node and the principle of maximum differential entropy change for node optimal projection coefficient,and lastly use reverse multicast routing structure in the problem of Sink and the target node routing.Theoretical and simulation results indicate that it has obtained better reconstruction effect of simulation under the condition of ensuring energy consumption,which has a certain practical value on wireless sensor communication.
作者 刘卉 李泽军
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第4期570-576,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金重点项目(60933009) 湖南教育厅科学研究项目(12C0655 11C0375)
关键词 压缩感知 观测矢量 投影系数 组播树 数据收集 compressed sensing measurement vector projection coefficient multicast tree data gathering
  • 相关文献

参考文献12

二级参考文献66

共引文献187

同被引文献27

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2张卿,谢志鹏,凌波,孙未未,施伯乐.一种传感器网络最大化生命周期数据收集算法(英文)[J].软件学报,2005,16(11):1946-1957. 被引量:18
  • 3相征,张太镒,孙建成.基于最小二乘支持向量机的非线性系统建模[J].系统仿真学报,2006,18(9):2684-2687. 被引量:27
  • 4范磊.张运陶.基于LSSVM实现C02转化率的软测量建模[J].计算机应用化学.2006.23(1):55-59.
  • 5Thissen U,Brakel R,Weijer A P,et al.Using support vector machines for tiem series prediction [J].Chemometrics and Intelligent Laboratory System,2003,69(1): 35-49.
  • 6Gavrishchaka V. V.,Ganguli S B.Volatility forecasting from multiscale and high-dimensional market data[J].Neuroeomputing, 2003,55(1):285-305.
  • 7SilbersteinA, Braynard R,Ellis C,et a I. A SamPling-based Approach toOptimizing Top-k Queries in Sensor Networks[J]. Proceedings of IEEE ICDE ,2010.
  • 8ZeinalipontD1Vagena Z, Gunopulos D,et al. The Threshold Join Algorithm forTop-k Queries in Distributed Sensor Networks[J]. Proceedings of workshop dataManagement for Sensor Networks(DMSN), 2009.
  • 9WuM,Xu J Tang X,et al. Top-k Monitoring in Wireless Sensor Networks.IEEE Trans[J]. On Knowledge and Data Engineering(TKDE),2011,19(7).
  • 10SILBERSTEIN S,BRAYNARD R,ELLIS C. A Samplingbased approach to optinmizing Top-k queries in sensor networks[A].2010.68.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部