期刊文献+

关于二相障碍问题几点注记 被引量:1

Remarks on the two-phase obstacle-type problem
下载PDF
导出
摘要 在Orlicz-Sobolev空间中考察一类自由边界问题极小化子正则性理论.通过建立极小化问题与方程强解问题的等价性,建立二相障碍问题极小化子的存在唯一性及C^(1,α)-正则性.最后建立极小化子在自由边界附近的非退化性. The regularity of a minimizer was established for free boundary problems in Orlicz-Sobolev spaces. The uniqueness and C^(1,α)-regularity of the minimizer was obtained by dealing with the equivalence of the minimizer and a strong solution,implying the non-degeneracy of the minimizer near the free boundary.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期409-415,共7页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10971088)
关键词 障碍问题 极小化子 强解 正则性 非退化性 自由边界问题 obstacle-type problem minimizer strong solution regularity non-degeneracy free boundary problem
  • 相关文献

参考文献11

  • 1LEE K, SHAHGHOLIAN H. Hausdorff measure and stability for the p-obstacle problem(2 < p < 00 )[J]. Journal of Differential Equations, 2003, 195(1): 14-24.
  • 2KARP L, KILPELAINEN T, PETROSVAN A, et al. On the porosity of free boundaries in degenerate varia?tional inequalities[J]. Journal of Differential Equa?tions, 2000, 164(1): 110-117.
  • 3EDQUIST A, LINDGREN E. A two-phase obstacle problem for the p-Laplacian[J]. Calculus of Varia?tions, 2009, 35(6): 421-433.
  • 4CAFFARELLI L A, JERISON D, KENIG C E. Some new monotonicity theorems with applications to free boundary problems(J]. Annals of Mathematics, 2002, 155(2): 369-404.
  • 5GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[Mj. Berlin: Springer-Verlag, 2001: 288-289.
  • 6ADAMS R, FOURNIER J F. Sobolev spaces[M]. Oxford: Academic Press, 2003: 281-282.
  • 7MARTINEZ A, WOLANSKI N. A minimum problem with free boundary in Orlicz spaces[J]. Advances in Mathematics, 2008, 218(6): 1914-1971.
  • 8CHALLAL S, LVAGHFOURI A, RODRIGUES J F. On the A-obstacle problem and the Hausdorff measure of its free boundary[J]. Annalidi di Matematica, 2012, 191(1): 113-165.
  • 9BrezisH.泛函分析--理论和应用.北京:清华大学出版社,2009:64-65.
  • 10CHALLAL S, LVAHFOURI A. Second order regularity for the a-laplace operator(J]. Mediterranean Journal of Mathematics, 2010, 7(3): 283-296.

同被引文献4

  • 1BRAGA J E M,MOREIRA D R.Uniform Lipschitz regularity for classes of minimizers in two phase free boundary problems in Orlicz spaces with small density on the negative pha.
  • 2ZHENG Jun,ZHANG Zhi-hua,ZHAO Pei-hao.A minimum problem with two-phase free boundary in Orlicz spaces[J].Monatshefte fiir Mathematik,2013,172(3/4):441-475.
  • 3TAN Zhong,FANG Fei.Orlicz-Sobolev versus H(o)lder local minimizer and multiplicity results for quasilinear elliptic equations[J].Journal of Mathematical Analysis and Appl.
  • 4KARAKHANYAN A L,SHAHGHOLIAN H.Analysis of a free boundary at contact points with Lipschitz data[EB/OL].2012-4-22[2013-9-23].http://arxiv.org /abs/1205.5052.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部