期刊文献+

0.15μm GaN HEMT及其应用 被引量:5

A 0.15 μm GaN HEMT and Its Application
下载PDF
导出
摘要 报道了毫米波应用的0.15μm场板结构GaN HEMT。器件研制采用了76.2mm(3英寸)SiC衬底上外延生长的AlGaN/GaN异质结构材料,该材料由MOCVD技术生长并引入了掺Fe GaN缓冲层技术以提升器件击穿电压。器件栅脚和集成了场板的栅帽均由电子束光刻实现,并采用栅挖槽技术来控制器件夹断电压。研制的2×75μm栅宽GaN HEMT在24V工作电压、35GHz频率下的负载牵引测试结果显示其输出功率密度达到了4W/mm,对应的功率增益和功率附加效率分别为5dB和35%。采用该0.15μm GaN HEMT技术进行了Ka波段GaN功率MMIC的研制,所研制的功率MMIC在24V工作电压下脉冲工作时(100μs脉宽、10%占空比),29GHz频点处饱和功率达到了10.64W。 A 0.15 μm field plated GaN HEMT for millimeter-wave application is presented in this paper.The AlGaN/GaN heterostructure on 76.2 mm(3 inch) SiC substrate for HEMT fabrication was grown by metal-organic chemical deposition(MOCVD) technology and Fe doped GaN buffer layer was employed to improve the GaN HEMT′s breakdown voltage.Electron beam(e-beam) lithography was used to define both gate footprint and cap of the gate with integrated field plate.Gate recessing was employed to control pinch-off voltage of the device.The 2×75 μm gate width GaN HEMT shows a power density of 4 W/mm with associated power gain and power added efficiency(PAE) of 5.3 dB and 35% respectively,by using load-pull measurements at 35 GHz and 24 V drain bias.Ka band GaN power MMICs were designed and fabricated based on the developed 0.15 μm gate length GaN HEMT technology.The realized Ka band MMIC shows a saturation power of 10.64 W at 29 GHz,operated at 24 V drain bias and pulsed condition with 100 μs pulse width and 10% duty cycle.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2013年第3期215-219,共5页 Research & Progress of SSE
关键词 铝镓氮 氮化镓 高电子迁移率晶体管 场板 毫米波功率单片 AlGaN/GaN HEMT field plate millimeter-wave power MMIC
  • 相关文献

参考文献12

  • 1Chini A, Buttari D, Coffie R, et al. 12 W/mm power density A1GaN/GaN HEMTs on sapphire substrate [J]. Eleetronics Letters, 2004,40(1) : 73-74.
  • 2Wu Y F, Saxler A, Moore M, et al. 30 W/mm GaN HEMTs by field plate optimization[J]. IEEE Electron Device Letters, 2004,25 (3) : 117-119.
  • 3Johnson J W, Piner E L, Vescan A, et al. 12 W/mm A1GaN-GaN HFETs on silicon substrates[J]. IEEE Electron Device Letters, 2004,25 (8) : 459-461.
  • 4Singhal S, Roberts J C, Raiagopal P, et al. GaN-on- Si failure mechanisms and reliability improvements [C]. IEEE International Reliability Physics Sympo- sium, 2006 95-98.
  • 5Inoue Y, Masuda S, Kanamura M, et al. Degrada- tion-mode analysis for highly reliable GaN-HEMT [C]. IEEE MTT-s Digest, 2007..639-642.
  • 6Lee S, Vetury R, Brown J D, et al. Reliability as- sessment of A1GaN/GaN HEMT technology on SiC for 48 V applications[C]. IEEE International Reliabil- ity Physics Symposium, 2007 : 446-449.
  • 7Jimenez J L, Chowdhury U. X-band GaN FET relia- bility[C]. IEEE International Reliability Physics Symposium, 2007: 429-435.
  • 8Wu Y F, Moor M, Abrahamsen A, et al. High-volt- age millimeter-wave GaN HEMTs with 13.7 W/mm power eensity [C]. IEEE Compound Semiconductor Integrated circuits Conference, 2007 : 405-407.
  • 9Kao M Y, Lee C, Hajji R, et al. A1GaN/GaN HEMTs with PAE of 53% at 35 GHz for HPA and multi-function MMIC applications [C]. IEEE Com- pound Semiconductor Integrated circuits Conference, 2007 627-630.
  • 10Moon J S, Wong D, Hu M, et al. 55% PAE and high power Ka-band GaN HEMTs with linearized transcon- ductance via n+ GaN source contact ledge[J]. IEEE Electron Device Letters, 2008,29 (8) : 834-837.

同被引文献15

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部