期刊文献+

基于混沌量子粒子群算法的置换流水车间调度 被引量:7

Chaotic Quantum-Behaved Particle Swarm Optimization Based Permutation Flow-Shop Scheduling
下载PDF
导出
摘要 流水车间调度问题广泛存在于企业生产过程中,优化的调度方案可以提高企业生产效率,降低生产成本。提出了基于混沌量子粒子群优化算法并应用于求解置换流水车间调度问题,该算法在量子粒子群算法(QPSO)的基础上,引入了混沌机制,在保持QPSO算法收敛速度快的同时,利用混沌机制的遍历性,克服了QPSO易陷入局部极小值的缺点。同时提出了一种新的混沌变量到工件排序的编码方案,能够完整保留混沌的遍历性。仿真结果验证了所提出的新的调度算法能更好地探索更优解,同时不失去量子粒子群算法的收敛速度。 Flow-shop scheduling problem (FSP) widely exists in enterprise production processes. Optimal scheduling method can improve productivity and reduce production cost. In this paper, an optimization algorithm based on the chaotic quantum-behaved particle swarm is proposed to solve the permutation flow-shop scheduling problem, in which the chaotic mechanism is introduced into quantum- behaved particle swarm optimization (QPSO) such that the shortcoming of easily falling into local minimum for QPSO can be avoided. Meanwhile, the fast convergence speed of QPSO can be kept in this proposed algorithm. Besides, a new representation scheme is proposed to overcome the difficulties of conversion from chaotic variable into job sequence. The simulation results verify the effectiveness of the proposed algorithm in this work.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期325-331,共7页 Journal of East China University of Science and Technology
基金 国家自然科学基金(61174040 61104178) 中央高校基本科研业务费专项基金
关键词 粒子群优化 量子粒子群优化 混沌优化 流水车间调度问题 particle swarm optimization quantum-behaved particle swarm optimization chaotic optimization flow-shop scheduling problem
  • 相关文献

参考文献13

  • 1Johnson S M. Optimal two and three stage production sched- ules with setup times included [J]. Naval Research Logistics Quarterly, 1954, 1(1): 61-68.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of 6th Int Symposium on Micro Machine and Human Science. USA: IEEE Press, 1995: 39-43.
  • 3Sun Jun, Feng Bin, XU Wenbo. Particle swarm optimization with particles having quantum behavior [C]// Proceedings of The IEEE Congress on Evolutionary Computation (CEC). USA: IEEE Press, 2004: 325-331.
  • 4Sun Jun, Xu Wenbo, Feng Bin. A global search strategy of quantum-behaved particle swarm optimization [C]//2004 IEEE Conference on Cybernetics and Intelligent Systems. USA: IEEE Press, 2004:111-116.
  • 5石锦风,冯斌,孙俊.求解job-shop调度问题的量子粒子群优化算法[J].计算机应用研究,2008,25(3):684-686. 被引量:4
  • 6冯斌,石锦风,孙俊.基于QPSO算法的作业车间调度问题的研究[J].计算机工程与设计,2007,28(23):5690-5693. 被引量:6
  • 7Liu Bo, Wang Ling, Jin Yihui, et al. Improved particle swarm optimization combined with chaos [J]. Chaos Soliton Fract, 2005, 25(5) : 1261-1271.
  • 8胥小波,郑康锋,李丹,武斌,杨义先.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30. 被引量:126
  • 9程伟,陈森发.权重自适应调整的混沌量子粒子群优化[J].计算机工程与应用,2010,46(9):46-48. 被引量:5
  • 10Yang Kaiqiao, Maginu K, Nomura H. Parameters identifica- tion of chaotic systems by quantum-behaved particle swarm optimization [J]. Int J Comput Math, 2009, 86(12): 2225- 2235.

二级参考文献33

  • 1高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 2Kennedy J,Eberhart R.Particle swarm optimization [C]//Proceedings of IEEE Int Conference on Neural Network, 1995:1942-1948.
  • 3Clerc M,Kennedy J.The particle swarm:Explosion, stability and convergence in a multi-dimensional complex space[J].IEEE Trans- actions on Evolutionary Computation,2002:58-73.
  • 4Feng J S B,Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation, 2004: 325-331.
  • 5Sun J,Xu W B.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of the IEEE Congress on Cybernetics and Intelligent System,2004:111-116.
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proc of the First IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE Press, 1995. 1942-1948.
  • 7MODARES H, ALFI A, NAGHIBI-SISTANI M B. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) 1105-1111.
  • 8KARAKUZU C. Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J]. International Journal of Innovative Computing, Information and Control, 2010, 6(10):4755-4770.
  • 9KULKARNI R V, VENAYAGAMOORTHY G K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J] IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40(6) 663-675.
  • 10ZHANG W, LIU J, NIU Y Q. Quantitative prediction of MHC-II binding affinity using particle swarm optimization[J]. Artificial Intelligence in Medicine,2010,50(2): 127-132.

共引文献136

同被引文献80

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:203
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 4孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011.
  • 5王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2011.
  • 6张金玉,张炜.装备智能故障诊断与预测[M].北京:国防工业出版社,2013.
  • 7Narayanan A, Moore M.Quantum inspired genetic algo- rithm[C]//IEEE International Conference on Evolutionary Computation, ! 996 : 61-66.
  • 8Han K H, Kim J H.Genetic quantum algorithm and its application to combinatorial optimization problem[C]// IEEE International Conference on Evolutionary Compu- tation, 2000 : 1354-1360.
  • 9Han K H, Kim J H.Quantum-inspired evolutionary algo- rithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
  • 10Khorand A R, Akbarzadehm R.Quantum gate optimization in a meta-level genetic quantum algorithmiC]l~2005 IEEE International Conference on Systems,Man and Cybernetics, 2005,4 : 3055-3062.

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部