摘要
设n是非负整数.本文定义了环R的n-表现维数FP_nD(R).在n-凝聚环下,给出了环R的右整体维数rD(R)、弱整体维数wD(R)、n-表现维数FP_nD(R)之间的关系.并证明了在几乎优越扩张下两个环的n-表现维数是相等的.
Let n be a nonnegative integer. In this paper, we define the n-presented dimension FPnD(R) of a ring R and investigate relations among the right global dimen- sion rD(R), the weak global dimension wD (R) and the n-presented dimension FPnD(R) of rings for right n-coherent rings. We also obtain that n-presented dimensions of two rings are equal under an almost excellent extension.
出处
《南京大学学报(数学半年刊)》
CAS
2013年第1期23-33,共11页
Journal of Nanjing University(Mathematical Biquarterly)
基金
Supported by the Technology Project of Fujian Provincial Department of Education(JB09298)
关键词
n-表现维数
n-凝聚环
有限正规扩张
几乎优越扩张
n-presented dimension, n-coherent ring, finite normalizing extension, al-most excellent extension