摘要
本文构造了一类单隐层神经网络,使其逼近R^d上连续函数的速度达到最佳代数多项式逼近速度,并刻划了该类单隐层神经网络的逼近性质.
In this paper, we construct a class of neural networks with single hidden layer, by which the approximation rate to continuous functions of d variables on any compact subset of Rd is the same as the case by the best algebraic polynomial. Fur- thermore, we characterize the approximation properties of this class of neural networks with single hidden laver.
出处
《南京大学学报(数学半年刊)》
CAS
2013年第1期34-39,共6页
Journal of Nanjing University(Mathematical Biquarterly)
基金
Supported by National Natural Science Foundation of China(11171137)
Natural Science Foundation of Zhejiang Province(Y6110676)
关键词
神经网络
逼近速度
最佳逼近多项式
neural networks, approximation rate, the best algebraic polynomial ap-proximation