期刊文献+

阿霉素对端粒序列及其相似物电泳迁移速度的影响 被引量:2

Effects of adriamycin on telomere sequence and its analogue electrophoresis migration velocity
下载PDF
导出
摘要 目的观察阿霉素对端粒序列d(TTAGGG)不同重复次数以及与其具有相似结构的单核苷酸序列二级结构的影响,探讨阿霉素诱导端粒复重序列d(TTAGGG)n形成鸟嘌呤四联体的机制。方法人工化学合成线性单核苷酸序列d(TTAGGG)、d(TTAGGG)2、d(TTAGGG)3、d(TTAGGG)4、d(TTAGGG)5、d(TTGGAG)4、d(TG-TAGG)4、d(TAGGTG)4、d(TTGAGG)4;用非变性聚丙烯酰胺凝胶电泳法观察不同浓度阿霉素(0、1.25、2.5、5.0μg/mL)对端粒重复序列d(TTAGGG)4电泳迁移速度的影响;观察5.0μg/mL阿霉素对d(TTAGGG)、d(TTAGGG)2、d(TTAGGG)3、d(TTAGGG)4、d(TTAGGG)5电泳迁移速度的影响;观察5.0μg/mL阿霉素对d(TTAGGG)4、d(TTGGAG)4、d(TGTAGG)4、d(TAGGTG)4、d(TTGAGG)4电泳迁移速度的影响。结果随着阿霉素的浓度的提高,端粒重复序列d(TTAGGG)4电泳迁移速度也随之加快;阿霉素可使端粒重复序列d(TTAGGG)4、d(TTAGGG)5序列的二级结构发生改变,从而加快其电泳迁移的速度,对d(TTAGGG)、d(TTAGGG)2、d(TTAGGG)3的电泳迁移速度没有影响;阿霉素可对含有GGG碱基排列的端粒重复序列发生电泳迁移速度的加快,而对无GGG碱基排列的端粒序列类似物的电泳迁移没有影响。结论在阿霉素存在条件下,端粒序列d(TTAGGG)n重复4次以上的寡核苷酸序列的电泳迁移速度加快,其二级结构的改变是迁移速度加快的主要原因,这种改变后形成的二级结构可能为G-四联体。 Objective To detect the mechanism of G-quadruplex production by observing the effects of adriamycin on telomere sequence d(TYAGGG) in different repeated times and the secondary structure of telomere' s analogue single nucleotide sequence. Methods The oligonucleotide sequences d ( TrAGGG), d (TYAGGG) 2, d ( TrAGGG ) 3, d (TTAGGG),, d(TTAGGG) s, d(TYGGAG) 4, d(TGTAGG) 4, d(TAGGTG) 4, d(TTGAGG) 4 were artificially synthetized by chemical method; telomere repeat sequence of d (TTAGGG) 4 were effected by different concentrations of adriamycin (0, 1.25,2.5,5μg/mL) whose effects on electrophoresis migration velocity were observed by the non-denaturing polyacrylamide gel electrophoresis method. The effects of adriamycin at the concentrations of 5μg/ml on the electrophoresis migration velocity of d(TYAGGG), d(TTAGGG) 2, d(TYAGGG) 3, d(rITAGGG) 4 and d(TTAGGG) s were observed by performing non-denaturing polyacrylamide gel electrophoresis ; meanwhile, the effects of adriamycin at the concentrations of 5 μg/ml on the electrophoresis migration velocity of d (TTAGGG) 4, d (TYGGAG) 4, d (TGTAGG) 4, d (TAGGTG) 4 and d ( TTGAGG)4 were also observed by performing non-denaturing polyacrylamide gel electrophoresis. Results With the increasing concentrations of adriamycin, the electrophoretic migration velocity of telomere sequence d (TTAGGG)4 was accelerating and the spatial structure was changing increasingly; adriamycin at concentration of 5μg./ml could make the internal structure of telomere repeat sequence d(TTAGGG)4 and d(TTAGGG)5 change, so as to speed up the electrophoresis migration velocity; whereas adriamycin had no influence on d( TTAGGG), d(rrTAGGG)2 and d(TYAGGG) ; adriamycin at concentration of 5 μg/mL could accelerate electrophoresis velocity on sequence containing telomere repeat GGG base, but had no effect on sequence without GGG base. Conclusion With the effect of adriamycin, the electrophoresis velocity of oligonucleotide sequences repeated more than four times has accelerated, and the secondary structure changing is the main reason for the difference. The secondary structure formed after changing might be the G-quadruplex.
作者 孟永亮 孙彦
出处 《山东医药》 CAS 2013年第14期4-7,共4页 Shandong Medical Journal
基金 山东省高校科技计划资助项目(J11LF74) 山东省科学技术发展计划资助项目(2011YD8018)
关键词 G-四联体 阿霉素 端粒 聚丙烯酰胺凝胶电泳 G-quadruplex adriamycin telomere polyacrylamide gel electrophoresis
  • 相关文献

参考文献11

  • 1Esposito V, Randazzo A, Galeone A, et al. Structural study of four-stranded quadruplex structures containing 2 -deoxy-8-( propyn- 1-yl) adenosine [ J]. Bioorg Med Chem, 2004, 12 ( 5 ) : 1191- 1197.
  • 2Sun D, Thompson B, Cathers BE, et al. Inhibition of human te- lomerase by a G-quadruplex-interactive compound [ J ]. J Med Chem, 1997,40(14) :2113-2116.
  • 3Fedoroff OY, Salazar M, Han H, et al. NMR-Based model of a te- lomerase-inhibiting compound bound to G-quadruplex DNA [ J ]. Biochemistry, 1998,37 (36) : 12367-12374.
  • 4de Clan A, Delemos E, Mergny JL, et al. Highly efficient G-quad- ruplex recognition by bisquinolinium compounds [ J ]. J Am Chem Soc, 2007,129 (7) : 1856-1857.
  • 5Henderson E, Hardin CC, Walk SK, et al. Telomeric DNA oligo- nucleotides form novel intramoleeular structures containing gua- nine-guanine base pairs[J]. Cell, 1987,51(6) :899-908.
  • 6Riou JF, Guittat L, Mailliet P, et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands[ J]. Proc Nail Acad Sci USA, 2002,99 (5) :2672-2677.
  • 7Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis [ J ]. Nature, 1988,334(6180) :364-366.
  • 8Sundquist WI, Klug A. Telomefic DNA dimefizes by formation of guanine tetrads between hairpin loops [J]. Nature, 1989,342 (6251) :825-829.
  • 9Williamson JR, Raghuraman MK, Cech TR. Monovalent cation-in- duced structure of telomefic DNA: the G-quartet model[J]. Cell, 1989,59(5) :871-880.
  • 10胡晓文,黄洪章,余东升.阿霉素诱导鸟嘌呤-四链体形成对Tca8113细胞端粒酶介导的端粒延伸反应的影响[J].华西口腔医学杂志,2007,25(4):399-403. 被引量:4

二级参考文献10

  • 1代晓明,李龙江,温玉明,王昌美,刘华,刘坤,李胜富.端粒酶催化亚单位转染血管内皮细胞的实验研究[J].华西口腔医学杂志,2004,22(5):373-375. 被引量:3
  • 2Petraccone L,Erra E,Esposito V,et al.Biophysical properties of quadruplex helices of modified human telomeric DNA[J].Biopolymers,2005,77 (2):75-85.
  • 3Esposito V,Randazzo A,Galeone A,et al.Structural study of four-suranded quadruplex structures containing 2'-deoxy-8-(propyn-1-yl) adenosine[J].Bioorg Med Chem,2004,12(5):1191-1197.
  • 4Pothukuchy A,Mazzitelli CL,Rodriguez ML,et al.Duplex and quadruplex DNA binding and photocleavage by trioxatriangulenium ion[J].Biochemistry,2005,44(6):2163-2172.
  • 5Peunarun G,Granotier C,Gauthier LR,et al.Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands[J].Oncogene,2005,24 (18):2917-2928.
  • 6Burger AM,Dai F,Schultes CM,et al.The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth,consistent with telomere targeting and interference with telomerase function[J].Cancer Res,2005,65(4):1489-1496.
  • 7Rossetti L,Franceschin M,Schirripa S,et al.Selective interactions of perylene derivatives having different side chains with inter-and intramolecular G-quadruplex DNA structures.A correlation with telomerase inhibition[J].Bioorg Med Chem Lett,2005,15 (2):413-420.
  • 8Riou JF,Guittat L,Mailliet P,et al.Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands[J].Proc Natl Acad Sci U S A,2002,99 (5):2672-2677.
  • 9Gomez D,Mergny JL,Riou JF.Detection of telomerase inhibitors based on g-quadruplex ligands by a modified telomeric repeat amplification protocol assay[J].Cancer Res,2002,62 (12):3365-3368.
  • 10Fletcher TM,Sun D,Salazar M,et al.Effect of DNA secondary structure on human telomerase activity[J].Biochemistry,1998,37(16):5536-5541.

共引文献3

同被引文献28

  • 1胡晓文,黄洪章,余东升.阿霉素诱导鸟嘌呤-四链体形成对Tca8113细胞端粒酶介导的端粒延伸反应的影响[J].华西口腔医学杂志,2007,25(4):399-403. 被引量:4
  • 2Davis L, Maizels N. G4 DNA: at risk in tile genome[J]. EMBO J, 2011,30(19) :3878-3879.
  • 3Gift B, Smaldino PJ, Thys RG, et al. G4 resolvase 1 tightly binds and unwinds unimotecular G4-DNA[ J]. Nucleic Acids Res, 2011, 39(16) :7161-7178.
  • 4Membrino A, Cogoi S, Pedersen EB, et al. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy[ J]. PLoS One, 2011,6(9) :p. e24421.
  • 5Lubitz I, Kotlyar A. G4-DNA-eoated gold nanoparticles: synthesis and assembly[ J]. Bioconjug Chem, 2011,22(10) :2043-2047.
  • 6Singh V, Benz A, Hartig .IS. G quadruplexes stahilised by 8-oxn-2'- deoxyguanosine[ J ]. Chemistry, 2011 , 17 ( 39 ) : 10838-10843.
  • 7Yuan NB, Long Y, Zhang X, et al. Study on the mechanism of au- tologous platelet-rich gel to treat the refractory diabetic dermal ulcers [J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2009,40(2) :292-294.
  • 8Chen Y, Agrawal P, Brown RV. The major G-quadruplex formed in the human platelet-derived growth factor receptor beta promoter adopts a novel broken-strand structure in K + solution [ J ]. J Am Chem Soc, 2012,134 (32) : 13220-13223.
  • 9Juranek SA, Paeschke K. Cell cycle regulation of G-quadruplex DNA structures at telomeres[ J]. Curr Pharm Des, 2012,18 ( 14 ) : 1867-1872.
  • 10Onyshchenko MI, Gaynutdinov TI, Englund EA, et al. Quadru- plex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region [ J]. Nucleic Acids Res, 2011,39 (16) :7114-7123.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部