期刊文献+

Effective thermal and electrical conductivity of graphite nanoplatelet composites 被引量:1

石墨纳米片复合物的有效热导率和电导率(英文)
下载PDF
导出
摘要 The relationship between the thermal/electrical conductivity enhancement in graphite nanoplatelets (GNPs) composites and the properties of filling graphite nanoplatelets is studied. The effective thermal and electrical conductivity enhancements of GNP-oil nanofluids and GNP-polyimide composites are measured. By taking into account the particle shape, the volume fraction, the thermal conductivity of filling particles and the base fluids, the thermal and electrical conductivity enhancements of GNP nanofluids are theoretically predicted by the generalized effective medium theory. Both the nonlinear dependence of effective thermal conductivity on the GNP volume fraction in nanofhiids and the very low percolation threshold for GNP-polyimide composites are well predicted. The theoretical predications are found to be in reasonably good agreement with the experimental data. The generalized effective medium theory can be used for predicting the thermal and electrical properties of GNP composites and it is still available for most of the thermal/electrical modifications in two-phase composites. 研究了石墨纳米片复合物的电、热传输性质的增强与添加的石墨纳米片热导率、电导率之间的关系.测量了石墨纳米片/油纳米流体、石墨纳米片/聚酰亚胺复合物的有效热导率和电导率增强.通过考虑颗粒形状、体积分数、添加颗粒的热导率和基质性质,依据发展的有效媒质理论,理论预测了石墨片纳米流体的电导率、热导率增强.解释了石墨纳米片的添加量和增强之间的非线性关系,同时还阐明了小体积份数下石墨纳米片复合物的渗流阈值.理论计算结果与实验结果吻合.发展的有效媒质理论不仅适用于预测石墨纳米片复合物的电导率、热导率性质,而且还适用于所有两相复合体系的电导率、热导率改性.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期158-161,共4页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.50906073,31070517) China Postdoctoral Science Foundation(No.20110491332) Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101009B) the Science and Technology Development Plan of North Jiangsu(No.BC2012444)
关键词 graphite nanoplatelet nanofluids THERMALCONDUCTIVITY electrical conductivity percolation threshold 石墨纳米片 纳米流体 热导率 电导率 渗流阈值
  • 相关文献

参考文献17

  • 1Novoselov K S. Electric field effect in atomically thin carbon films [ J ]. Science, 2004, 306 ( 5696 ) : 666 - 669.
  • 2Novoselov K S. Two-dimensional gas of massless Dirac fermions in grapheme [ J]. Nature, 2005,438 (9) :197- 200.
  • 3Zhang Y B,Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry' s phase in grapheme EJ]- Nature, 2005, 438(9) : 201 -204.
  • 4Nair R R. Fine structure constant defines visual transpar- ency of grapheme [ J]. Science, 2008, 3211(5881 ) :1308 - 1310.
  • 5Balandin A A. Superior thermal conductivity of single- layer grapheme [ J ]. Nano Letter, 2008, 8 ( 3 ) : 902 - 907.
  • 6Ghosh S. Extremely high thermal conductivity of gra- phene: prospects for thermal management applications in nanoelectronic circuits [ J ]. Applied Physics Letter, 2008, 92( 15 ) : 151911 - 151913.
  • 7Yu A, Itkis M E, Bekyarova E, et al. Effect of single- walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites [J]. Applied Phys- ics Letter, 2006, 89( 13 ) : 133102 - 133103.
  • 8Aiping Y, Palanisamy R, Mikhail E I, et al. Graphite nanoplatelet-epoxy composite thermal interface materials [ J]. Journal of Physics Chemistry Letter C, 2007, 111 (75) : 7565 - 7569.
  • 9Bryning M B, Islam M F, Kikkawa J M, et al. Conduc- tivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites [ J ]. Advanced Materials, 2005, 17(11) : 1186-1191.
  • 10Ounaies Z, Park C, Wise K E, et al. Carbon nanotube polymer composites [ J ]. Composites Science Technolo- gy, 2003, 63(16) : 1637-1646.

同被引文献13

  • 1张涛,余建祖.泡沫铜作为填充材料的相变储热实验[J].北京航空航天大学学报,2007,33(9):1021-1024. 被引量:30
  • 2Pielichowska K,Pielichowski K.Phase Change Materials for Thermal Energy Storage[J].Progress in Materials Science,2014,65:67-123.
  • 3Kenisarin M M.High-temperature Phase Change Materials for Thermal Energy Storage[J].Renewable and Sustainable Energy Reviews,2010,14(3):955-970.
  • 4Sari A,Bier A,Karaipekli A,et al.Synthesis,Thermal Energy Storage Properties and Thermal Reliability of Some Fatty Acid Esters with Glycerol as Novel Solid-liquid Phase Change Materials[J].Solar Energy Materials and Solar Cells,2010,94(10):1711-1715.
  • 5Sharma R K,Ganesan P,Tyagi V V,et al.Developments in Organic Solid-liquid Phase Change Materials and Their Applications in Thermal Energy Storage[J].Energy Conversion and Management,2015,95:193-228.
  • 6Chen J,Yang D,Jiang J,et al.Research Progress of Phase Change Materials(PCMs)Embedded with Metal Foam:A Review[J].Procedia Materials Science,2014(4):389-394.
  • 7Sundarram S S,Li W.The Effect of Pore Size and Porosity on Thermal Management Performance of Phase Change Material Infiltrated Microcellular Metal Foams[J].Applied Thermal Engineering,2014,64(1):147-154.
  • 8Xiao X,Zhang P,Li M.Preparation and Thermal Characterization of Paraffin/Metal Foam Composite Phase Change Material[J].Applied Energy,2013,112:1357-1366.
  • 9Aydin A A,Okutan H.Polyurethane Rigid Foam Composites Incorporated with Fatty Acid Ester-based Phase Change Material[J].Energy Conversion and Management,2013,68:74-81.
  • 10Ince,Seki Y,Ezan M A,et al.Thermal Properties of Myristic Acid/Graphite Nanoplates Composite Phase Change Materials[J].Renewable Energy,2015,75:243-248.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部