期刊文献+

一类对流占优奇异系数多孔介质方程的局部间断有限元方法研究

A Local Discontinuous Galerkin Finite Element Method for the Numerical Solution of a Convection-dominated Equation in Porous Media with Singular Coefficient
下载PDF
导出
摘要 本文研究求解一类对流占优奇异系数多孔介质方程的局部间断有限元方法,给出了处理方程奇异系数的方法和详细的局部间断有限元格式。该方法通过适当改写原方程并引入对流流通量以及扩散流通量,可以有效地抑制传统有限元方法求解对流占优问题在大梯度区域出现的数值伪震荡。数值实验表明该方法能有效求解对流占优奇异系数多孔介质方程。 A local discontinues Galerkin finite element method for the numerical simulation of a convection-dominated equation in porous media with singular coefficient is studied in this paper,and the scheme of the local discontinuous method is given in detail for the singular equation studied.By rewriting the original equation into proper form and introducing the convective and diffusive numerical fluxes,the method can effectively overcome numerical oscillation occurred in case of convection-dominated problems.Numerical results are also given to show the effectiveness of the method.
作者 刘红霞 徐娜
出处 《西昌学院学报(自然科学版)》 2013年第2期23-25,共3页 Journal of Xichang University(Natural Science Edition)
关键词 奇异系数 局部间断有限元 对流占优 Singular coefficient Local discontinuous Galerkin finite element Convection-dominated
  • 相关文献

参考文献2

二级参考文献9

  • 1张建侯,化工过程分析与计算机模拟,1989年
  • 2KANSCHAT B C, SCHOTZAU D. The local discontinuous Galerkin method for linearized incompressible fluid flow: a review[J]. Computers and Fluids, 2005, 34 :491-506.
  • 3COCKBURN B, SHU C W. The Runge-Kutta method local projection Pl-discontinuous Galerkin method for scalar conservation law [J] Mathematical Modelling and Numerical Analysis, 1991,25:337-361.
  • 4COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws :Ⅱ [J]. Mathematics of Computation, 1989,52 : 411-435.
  • 5COCKBURN B, HOUAND S, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws:Ⅳ[J]. Mathematics of Computation, 1990,54 : 545-581.
  • 6COCKBURN B, SHU C W. The local discontinuous Galerkin for time dependent convection-diffusion systems[J]. SIAM Journal of Numerical Analysis, 1998, 175 . 2440-2463.
  • 7BASSI F, REBAY S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997,131. 267-279.
  • 8LOMTEV I, KARNIADAKIS G E. A discontinuous Galerkin method for the Navier-Stokes equations[J]. Journal for Numerical Methods in Fluids, 1999,29:587 -603.
  • 9JOHNSON C. Numerical solution of partial differential equations by the finite element method[M]. Cambridge,UK: Cambridge University Press, 1994.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部