期刊文献+

新型样条权函数神经网络的云计算研究 被引量:1

Research on Cloud Computing for Neural Network of a New Kind of Spline Weight Functions
下载PDF
导出
摘要 采用权函数训练神经网络是近些年发展起来的一种算法。该算法有许多优点,例如可以直接求得全局最优点,有很好的泛化能力,训练后的权函数能够反映隐含在样本内部的有价值的信息特征等。因此进一步提高算法效率就显得十分重要。为了进一步提高运算速度,文中将神经网络与云计算相结合,采用云计算服务对一种新型的三次样条权函数神经网络算法的性能进行了分析,提出了云计算的定义,研究了三次样条权函数神经网络算法的并行机制。结果表明,采用云计算能够大幅提高三次样条权函数神经网络算法的效率。 Training neural network using weight functions is a new kind of algorithm developed in recent years, which has many advantanges, such as finding globe minima direcdy, good performance of generalization, extracting some useful information inherent in the problems and so on. It is very important to improve the efficiency for this new kind of algorithm. To improve the training speed, combine the neural networks with cloud computing, and analyze the performance of cloud computing services for the algorithm of training neural networks by cubic spline weight functions (NNCSWFs). Attempt to give the definition for cloud computation, and study the parallel mechanism to improve the computing performance. The results indicate that, by using cloud computing services, the work efficiency for NNCSWFs algorithm is much higher than before.
作者 张代远
出处 《计算机技术与发展》 2013年第7期57-61,共5页 Computer Technology and Development
基金 江苏高校优势学科建设工程资助项目(yx002001)
关键词 云计算 人工智能 前馈神经网络 三次样条函数 权函数 全局最小 插值 cloud computing artificial intelligence feedforward neural network cubic spline function weight function global minima interpolation
  • 相关文献

参考文献14

  • 1Hou M Z, Han X L. Constructive Approximation to Multivari- ate Function by Decay RBF Neural Network [ J ]. IEEE Trans. on Neural Netw. ,2010,21 (9) : 1517-1523.
  • 2Wedge D, Ingram D, McLean D, et al. On global-local artifi- cial neural networks for function approximation [ J ]. IEEE Trans. on Neural Netw. ,2006,17 (4) :942-952.
  • 3Ergezinger S,Tomsen E. An accelerated learning algorithm for muhilayer perceptrons : optimization layer by layer [ J ]. IEEE Trans. on Neural Netw. ,1995,6( 1 ) :31-42.
  • 4Ampazis N, Perantonis S J. Two highly efficient second-order algorithms for training feedforward networks [ J ]. IEEE Trans. on Neural Netw. ,2002,13(5) :1064-1073.
  • 5Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation [ J ]. IEEE Trans. on Neural Netw. , 2005,16( 1 ) :57-67.
  • 6Bortman M, Aladjem M. A Growing and Pruning Method for Radial Basis Function Networks [ J ]. IEEE Trans, on Neural Netw. ,2009,20 ( 6 ) : 1039-1045.
  • 7Behera L, Kumar S, Patnaik A. On Adaptive Learning Rate That Guarantees Convergence in Feedforward Networks [ J ]. IEEE Trans. on Neural Netw. ,2006,17(5) :1116-1125.
  • 8Xu Z B, Zhang R, Jing W F. When Does Online BP Training Converge [ J ]. IEEE Trans. on Neural Netw. , 2009,20 ( 10 ) : 1529-1539.
  • 9Wu W, Feng G R, Li Z X, et al. Deterministic convergence of an online gradient method for BP neural networks [ J ]. IEEE Trans. on NeurM Netw. ,2005 ,16(5 ) :533- 540.
  • 10Khashman A. A Modified Backpmpagation Learning Algorithm with Added Emotional Coefficients[ J]. IEEE Trans. on Neu- ral Netw. ,2008,19( 11 ) :1896-1909.

同被引文献8

  • 1张代远.样条权函数神经网络的一种新型算法[J].系统工程与电子技术,2006,28(9):1434-1437. 被引量:13
  • 2潘滟,谢胜曙,张群.基于BP神经网络指纹识别的算法[J].邵阳学院学报(自然科学版),2007,4(1):54-57. 被引量:4
  • 3HAGANMT,DEMUTHHB,BEALEM.神经网络设计[M].戴葵,宋辉,谭明峰,等,译.北京:机械工业出版社,2003.
  • 4Mehtre B M. Fingerprint image analysis for automatic identifi- cation [ J ]. Machine Vision and Application, 1993,6 ( 2- 3 ) : 124-139.
  • 5Karungaru S, Fukuda K, Fukumi M, et al. Classification of fin- gerprint images into individual classes using neural networks [C]//Proc of 34th annual conference of industrial electron- ics. Orlando, FL: IEEE,2008 : 1857-1862.
  • 6Xie Rui, Qi Jin. Continuous fingerprint image quality estima- tion based on neural network[ C ]//Proc of international sym- posium on intelligent signal processing and communication system. Chengdu : IEEE ,2010 : 1-4.
  • 7Abdi H ,Williams L J. Principal component analysis[ J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2 (4) :433-459.
  • 8Pearson K. On lines and planes of closest fit to systems of points in space [ J ]. Philosophical Magazine, 1901,2 ( 6 ) :559- 572.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部