期刊文献+

基于FODO算法MongoDB自动分片的改进 被引量:9

Improvement of MongoDB Auto-sharding Based on FODO
下载PDF
导出
摘要 随着Web2.0技术的高速发展,云计算中的大规模分布式服务和数据存储技术对传统的关系型数据库带来了巨大的挑战。NoSQL数据库打破了关系型数据的束缚,正在成为人们关注的焦点。NoSQL是一种非关系型数据库管理系统,松散的数据存储机制,不支持多表查询,有高效的查询功能。文中首先介绍了MongoDB数据库自动分片的原理和实现机制,然后为了解决在自动分片中数据负载不均衡,提出了基于数据操作频率的改进算法。这个改进的平衡策略可以有效地均衡分片中的数据,提高集群的并发读写性能。 With the rapid development of the Internet Web2.0 technology, the demands of large-scale distributed service and storage in cloud computing have brought great challenges to shackles of RDBMS is becoming the focus of attention. NoSQL is non-relational data- base management system with format loose data storage,not supporting the join operation,the effective query capability etc. In this paper, the principles and implementation mechanisms of auto-sharding in MongoDB databases are firstly presented, then an improved algorithm based on the frequency of data operation is proposed in order to solve the problem of uneven distribution of data in auto-sharding. The improved balancing strategy can efficiently balance the data among shards, and improve the cluster' s concurrent reading and writing per- formance.
作者 何杭锋
出处 《计算机技术与发展》 2013年第7期127-130,共4页 Computer Technology and Development
基金 安徽省自然科学基金(11040606M135)
关键词 非关系型数据库 MONGODB 自动分片 均衡策略 NoSQL MongoDB auto-sharding balance strategy
  • 相关文献

参考文献11

二级参考文献73

  • 1卢锡城,王怀民,王戟.虚拟计算环境iVCE:概念与体系结构[J].中国科学(E辑),2006,36(10):1081-1099. 被引量:37
  • 2Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 3Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 4Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 5Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 6Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 8Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 10Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.

共引文献1412

同被引文献61

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部