期刊文献+

演化式果蝇算法及其应用研究 被引量:17

Evolutionary Fruit Algorithm and Its Application Research
下载PDF
导出
摘要 现实中的大量问题都可以转化为函数优化问题,而寻找优化问题的通用高效算法,是智能计算所要达到的主要目的之一。文中基于果蝇觅食行为的社会特性,设计了一种求解函数优化问题的演化式果蝇算法。该算法首先定义了果蝇味道浓度判定值及果蝇味道浓度判定函数,针对多维度问题,提出了距离分量及味道浓度判定值分量的概念,并将其用于引导果蝇搜索过程之中,得到了较理想的寻优结果。实验表明,算法具有较高的效率、良好的全局性能及普适性。 Large number of problems in reality may convert into function optimization problem, and the general and efficient algorithm of search for optimization problems is one of the main purposes of intelligent computing achieving. In this paper,based on the fruit foraging behavior characteristics of the group, designed a evolutionary fruit algorithm for solving function optimization problem. The algorithm f'trstly defines the fruit smell concentration determination value and fruit smell concentration detection function, and then for the multi-di- mensional problem, puts forward the concept of distance components and smell concentration determination value component, and uses to guide the search process of fruit, getting the ideal optimization results. The numerical experiments show that the algorithm has high effi- ciency, global performance and good universality.
作者 胡能发
出处 《计算机技术与发展》 2013年第7期131-133,137,共4页 Computer Technology and Development
基金 广东省科技计划项目(2008B080701018)
关键词 果蝇算法 优化 味道浓度 判定值 判定函数 fruit algorithm optimization smell concentration decision value decision function
  • 相关文献

参考文献7

  • 1Fogel L, Owens A J, Walsh M J. Artificial Intelligence throughSimulated Evoluiton [ M ]. New York : John Whiley, 1966.
  • 2Schwefel H P. Evolu|ion amt Optimum Seeking [ M ]. N3 York :John Wiley & Sons, 1995.
  • 3SgossS A,Deneubourg J L, Posteels J M. Self organized shorl- cuts in the argentine ant [ J ]. Naturwissenchafien, 1989,76 (12) :579-581.
  • 4ColorniA, Dorigo M, Maniezzo V. An invest libation of some properties of an "ant algorithm" [ C]//Proceeding of the Par- aliel Problem Solving from Natm'e Conference. Brussels, Bel- gium : Elsevier Publishing, 1992 : 509-520.
  • 5李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:883
  • 6Pan W T. A New fruit fly optimization algorithm:taking the fi- nancial distress model as an example [ J ]. Knowledge-Based Systems ,2012,26( 1 ) :69-74.
  • 7潘文超.果蝇最佳化演算法[M].台湾:沧海书局,2011.

二级参考文献1

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.

共引文献889

同被引文献153

引证文献17

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部