期刊文献+

一种基于LS准则和L阶输入矢量的自适应算法

An Adaptive Filtering Algorithm Based On LS Criteria and L-Rank Input Vector
下载PDF
导出
摘要 提出了一种新的基于LS准则和L阶输入矢量的自适应滤波算法.该算法采用新的梯度计算公式,使自适应滤波中权矢量的更新比LMS精确和平滑.仿真表明经过250次迭代,新算法就可以收敛于最优值1.6.新算法与基本的解相关LMS算法(DLMS)和LMS算法相比,收敛速度快、稳定性更好.并给出了新算法、DLMS算法和LMS算法性能曲线仿真结果. A new adaptive filtering algorithm based on LS criteria and L-rank input vector is proposed. The new algorithm uses a new formula to calculate the gradient,and gets a more accurate renewing vector. Simulation shows that the new algorithm converges to the optimal value 1.6,through about 250 calculations. It is much faster and more stable in convergent performance,compared with LMS and DLMS. Simulation in MATLAB is given at last.
出处 《甘肃科学学报》 2013年第2期8-10,共3页 Journal of Gansu Sciences
基金 甘肃省自然科学基金资助项目(ZS011-A25016-G)
关键词 DLMS 自适应算法 LMS LS准则 DLMS adaptive algorithm LMS LS criteria
  • 相关文献

参考文献7

  • 1Doherty J, Porayath R. A Robust Echo Cancelor for Acoustic Envlronments[J]. IEEE Trans. Circuits and Systems, If, 1997, 44(6) 389-398.
  • 2Kwong R H, Johnston E W. A Variable Step Size LMS Algo- rithm[J]. IEEE Trans. On Signal Processing, 1992, 40 (7) : 1 633-1 642.
  • 3Glentis G O, Berberidis K, Theodoridis S. Efficient Least Sq- uare Adaptive Algorithms for FIR Transversal Filtering[J]. IEEE Signal Processing Magazine, 1999,16(4) : 13-41.
  • 4Windrow B, Stearns S D. Adaptive Signal Processing[M]. Lon- don.- Prentice-Hall, 1985.
  • 5Lim J S. New Adaptive Filtering Algorithms Based on an Or- thogonal Projection of Gradient Vectors[J]. IEEE Signal Pro- cessing Letters,2000,7(11) :314-316.
  • 6Kong A Lee Woon S. Gan Improving Convergence of the NL- MS Algorithm Using Constrained Subband Updates[J]. IEEE. Signal Processing Letters, 2004,11(9) : 736-739.
  • 7Tao Chen, Hong Ren Wu, Recursive LMS L-filters for Noise Removal In Images[J]. IEEE,Signal Processing Letters,2001, 8(2) : 36-38.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部