期刊文献+

Legendre多小波方法求解第一类Fredholm积分方程

Legendre Multi-wavelets Adaptive Method for First Category Fredholm Integral Equations
下载PDF
导出
摘要 根据小波分析的多分辨分析理论,构造了L2([0,1])上的分段Legendre多小波基函数,利用所构造的基函数提出了求解积分方程的配点法。求解过程中,对小波系数用阈值进行筛选,利用分段Legendre多小波基函数求解。以第一类Fredholm积分方程为例,表明该算法简单有效。 By multi resolution analysis theory, the structure of piecewise Legendre multi wavelets basis function on L2([0, 1]), and the basis functions were used for solving integral equations by collocation method. In the solving process, the wavelet coefficient with threshold value selection, using piecewise Legendre many wavelet basis function to solve. In the first category Fredholm integral equation, for exam- ple, shows that the algorithm is simple and effective.
作者 张菊梅
机构地区 渭南师范学院
出处 《计算机与数字工程》 2013年第6期874-875,895,共3页 Computer & Digital Engineering
基金 陕西省自然科学基础研究计划项目(编号:2010JQ3001) 渭南师范学院2012年研究生专项科研项目"小波-微分求积法(小波-DQ法)的研究与应用"(编号:12YKZ050) 陕西省军工企业军民融合管理体系研究(编号:12JMP106)资助
关键词 Legendre多小波 积分方程 配点法 Legendre multi-wavelets, integral equation, collocation method, adaptive
  • 相关文献

参考文献9

  • 1S. Yousefi. Numerical solution of Abel's integral equations by using Legendre wavelets[J]. Applied Mathematics and Computation, 2006,175(1): 574-580.
  • 2Y. Mahmoudi. Wavelet Galerkin method for numerical solution of nonlinear integral equation [J]. Applied Mathematics and Computation, 2005,167(2): 1119-1129.
  • 3S. A. Yousefi. Legendre wavelets method for solving dierential equations of Lane-Emden type[J]. Applied Mathematics and Computation, 2006,181 (2) : 1417-1422.
  • 4K. Maleknejad, F. Mirzaee. Using rationalized Haar wavelet for solving linear integral equations[J]. Applied Mathematicsand Computation, 2005,160:579-587.
  • 5K. Maleknejad, F. Mirzaee. Numerical solution of linear fred-holm integral equations system by rationalized haar functions method[J]. Int J. Comput Math,2008,11 : 1397-1405.
  • 6S. Yousefi, A. Banifatemi. Numerical solution of fredholm in tegral equations by using CAS wavelets[J]. Applied Mathematics and Computation, 2006.
  • 7Mahmoudi Y. Wavelet Galerkin method for numerical solution of nonlinear integral equation[J]. Applied Mathematics and Computation, 2005,167: 1119-1129.
  • 8S. Yousefi, M. Razzaghi. Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations[J]. Mathematics and Computations in Simulation, 2005,70 : 1-8.
  • 9王延新,韩惠丽.第一类Fredholm积分方程的CAS小波解法[J].四川兵工学报,2009,30(2):127-128. 被引量:6

二级参考文献7

  • 1Maleknejad K,Lotfi T,Mahdiani K.Numerical solution of Fredholm integral equations of the first kindintegral equation with wavelets-Galerkin method(WGM) and wavelets precondition[J].Appl Math Comp,2007,186:794-800.
  • 2Maleknejad K,Aghazadeh N,Mollapourasl R.Numerical solution of Fredholm integral equation of the first kind with collocation method and estimation of erro bound[J].Appl Math Comp,2006,179:352-359.
  • 3Rabbani N,Maleknejad K,Aghazadeh N,et al.Computational projection method for solving Fredholm integral equation[J].Appl Math Comp,2007,191:140-143.
  • 4Daubechies I.Ten Lectures on Wavelets[M].SIAM:Philadelphia,PA,1992,179:352-359.
  • 5Yousefi S,Banifatemi A.Numerical solution of Fredholm integral equations by using CAS wavelets[J].Appl Math Comp,2006,183:458-463.
  • 6Han Danfa,Shang Xufeng.Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration[J].Appl Math Comp,2007,194:460-466.
  • 7凌捷.求解第一类积分方程的正则化-小波方法及其数值试验[J].高等学校计算数学学报,1998,20(3):215-231. 被引量:5

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部