期刊文献+

二价/单价阳离子混合体系的纳滤过程 被引量:1

Nanofiltration of mixed salt solution with monovalent and divalent cations
下载PDF
导出
摘要 采用DK膜对(Mg2+、K+、Cl-)、(Ca2+、Na+、Cl-)三元离子混合体系进行分离实验,通过道南细孔-介电(DSPM-DE)模型对其分离性能进行评价。结果表明:料液中二价阳离子与单价阳离子浓度比越大,分离因子(SF)越小,越有利于分离;操作压力的增加亦能提高DK膜的分离能力,即SF随压差或渗透流率增加而减小,最后趋于稳定,存在一个极限SF。模型分析发现膜荷电密度(Xd)及孔内介电常数(εp)不仅与离子浓度有关,还与离子类型有关,且Xd及εp均随二价阳离子含量增加而单调减小;而SF随|Xd|、εp的减小而减小,证实了Xd和εp的大小直接决定二价阳离子与单价阳离子分离效果。 Mixed salt solutions containing three species of ions(Mg^2+、K^+、C1^-) and (Ca^2+、Na^+、C1^-) were filtrated with a commercially available DK nanofiltration membrane. The Donnan-steric pore model and dielectric exclusion (DSPM-DE) model was implemented to evaluate the separation performance. The results revealed that the higher the ratio of divalent cations to monvalent cations was, the better the facilitated separation of them was. The separation performance was also improved when working pressure or permeate flux was increased, and there was a limiting separation factor (Sr). Model analysis showed that membrane charge density (Xa) and dielectric constant (εp)within the pores depended on ion concentration and type (value and sign). |Xd| and εp decreased monotonously with increasing divalent cation concentration. Separation efficiency of divalent and monvalent cations directly depended on Xd and εp ,which was confirmed by the fact that Sr decreased with the decreasing |Xd| and εp.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2013年第4期53-57,共5页 Journal of Nanjing Tech University(Natural Science Edition)
基金 江苏省科技厅产学研前瞻性联合研究项目(BY2009106) 国家自然科学基金(20576052)
关键词 纳滤 分离因子 荷电密度 介电常数 nanofiltration separation factor charge density dielectric constant
  • 相关文献

参考文献18

  • 1Wang D X, Su M, Yu Z Y, et al. Separation performance of a nanofiltration membrane influenced by species and concentration of ions [ J ]. Desalination ,2005,175:219 - 225.
  • 2Timmer J M K, Speelmans M P J, van der Horst H C. Separation of amino acids by nanofiltration and ultrafiltration membranes [ J]. Separation and Purification Technology, 1998,14 : 133 - 144.
  • 3Ya W K,Rou M C. Ion rejection in single and binary mixed electro- lyte systems by nanofihration :effect of feed concentration[ J ]. Separa- tion Science and Technology ,2007,42 ( 14 ) :3071 - 3084.
  • 4Dey T K, Ramachandhran V, Misra B M. Selectivity of anionic species in binary mixed electrolyte systems for nanofiltration mem- branes[ J]. Desalination ,2000,127 : 165 - 175.
  • 5Rautenbach R, Grtischl A. Separation potential of nanofiltration membranes [ J ]. Desalination, 1990,77:73 - 84.
  • 6Garcia A J, Dickson J M. Mathematical modeling of nauofiltrationmembranes with mixed electrolyte solutions [ J ]. Journal of Mem- brane Science ,2004,235 : 1 - 13.
  • 7Santaf6 Moros A, Gozrlvez Zafrilla J M, Lora Gareta J. Applicabil- ity of the DSPM with dielectric exclusion to a high rejection nano- filtration membrane in the separation of nitrate solutions [ J ]. De- salination ,2008,221:268 - 276.
  • 8Teixeira M R, Rosa M J, Marianne N. The role of membrane charge on nanofiltration performance [ J ]. Journal of Membrane Science ,2005,265 : 160 - 166.
  • 9Yaroshchuk A E. Non-steric mechanisms of nanofiltration: super- position of donnan and dielectric exclusion [ J ]. Separation and Purification Technology ,2001,22 : 143 - 155.
  • 10Wang D,Wu L,Liao Z,et al. Modeling the separation performance of nanofiltration membranes for the mixed salts solution with Mg2 : and Ca2+ [J]. Journal of Membrane Science,2006,284:384-392.

二级参考文献9

  • 1Diawara C K. NanJiltration process efficiency in water desahna- tion[ J]. Separation Purification Research ,2008,37:303 - 325.
  • 2Braeken L, van der Bruggen B, Vandecasteele C. Regeneration of brewery waste water using nanofiltration [ J ]. Water Research, 2004,38 : 3075 - 3082.
  • 3Rice G, Kentish S, Vivekanand V, et al. Membrane-based dairy separation : a comparison of nanofihration and electrodialysis [ J ]. Developmenl Chemical Engincering Mineral Progress, 2005,13 : 43 - 54.
  • 4Vellenga E,Tragardh G. Nanot~ltration of combined salt and sugar solutions: coupling between retentions [ J 1- Desalination, 1998, 120:211 - 220.
  • 5Eseoda A, Fieveta P, Lakarda S, et al. Influence of salts on the re- jection of polyethyleneglycol by an NF organic membranc: pore swelling and salting-out eftects [ J ]. Journal of Membrane Sci- ence ,2010,347:174 - 182.
  • 6Bowen W R, Mukhtar H. Characterization and prediction of sepa- ration performance of nanofiltration membranes [ J ]. Journal of Membrane Science, 1996,112:263 - 274.
  • 7Bowen W R, Mohammad A W, Hilal N. Characterization of nano- filtration membranes for predictive purposes: use of salts, un- charged solutes and atomic force microscopy[ J ]. Journal of Mem- brane Science, 1997,126:91 - 105.
  • 8Benftez F J,Acero J L, Lea/ A l, et al. The use of ultraafiltcation and nanofihration membranes tot the purification of cork process-ing wastewater [ J]. Journal of ftazardous Materials, 2009,162 : 1438 - 1445.
  • 9Bandini S,Vezzani D. Nanofiltration modeling:the role of diclec- tric exclusion in membrane characterization [ J ]. Chemical Engi- neering Science ,2003,58:3303 - 3326,.

共引文献4

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部