期刊文献+

g_(ρππ)与有限温度有限宽度有限能量求和规则

g_(ρππ) in Finite-Width Finite Energy Sum Rule at Finite Temperature
原文传递
导出
摘要 基于量子色动力学有限能量求和规则,分别在零温和有限温度情形下研究了介子有限宽度对于ρππ耦合常数的影响.计算结果发现不仅在温度T=0和T≠0时,ρ介子的有限宽度对于gρππ有显著影响,而且当温度接近手征对称性恢复的临界温度时,π-介子的有限宽度对于gρππ(Q2,T,Γρ,Γπ)亦有重大影响. In the framework of the finite-energy quantum chromodynamics sum rule, the effect of the finite-width of the mesons to the ρππ-coupling constant is investigated at zero and finite temperature respectively. It is found that not only the finite-width of the ρmeson has the notable influence to the values of gρππ both at T=0 and T≠0, but also it does the π meson at the temperature near the critical one for restoration of chiral symmetry.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2013年第3期207-211,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(10775105)资助项目 北京谱仪合作组研究基金项目 武汉大学研究项目(201103011 9yw201115)
关键词 量子色动力学有限能量求和规则 有限温度 有限宽度 耦合常数 quantum ehromodynamics finite-energy sum rule finite temperature finite width coupling constant
  • 相关文献

参考文献34

  • 1Gasser J,Leutwyler H. Light quarks at low tempera- tures[J]. Phys Lett B, 1987,184 : 83-88.
  • 2aLarsen A. Symmetry restoration in the asymmetric lin ear a model at finite temperature[J]. Z Phys C: Par ticles & Fields, 1986,33 : 291.
  • 3Contreras C, Loewe M. The linear e-model and {inite temperature effects[J]. Int J Mod, Phys A,1990,S 2297.
  • 4Barducci A, Casalbuoni R, de Curtis S, elal. Current quark mass and chiral-symmetry breaking in QCD at fi- nite temperature in a mean-field approximation[J]. Phys Rev D,1992,46:2203.
  • 5Schenk A. Absorption and dispersion of pions at finite temperature[J]. Nucl Phys, 1991 ,B363: 97.
  • 6Schenk A. Pion propagation at finite temperature[J]. Phys Rev, 1993 ,D47 : 5138.
  • 7Kodama N, Oka M. The pion at finite temperature [J]. Nucl Phys, 1996, A601 : 304-318.
  • 8Blaschchke D, Volkov M K, Yudichev V I: Pion damping width from SU(2)XSU(2) NJL model[J].Ph ys Atom Nucl , 2003,66 : 2233-2237.
  • 9Chiku S, Hatsuda T. Soft modes associated with chiral transition at finite temperature[J]. Phys Rev D, 1998,57: R6-R9.
  • 10Chiku S, Hatsuda T. Optimized perturbation theory at finite temperature[J]. Phys Rev D, 1998 ,S8 : 76001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部