期刊文献+

基于平稳小波分析的社会网络异常检测研究 被引量:1

Social network change detection based on wavelet analysis
下载PDF
导出
摘要 社会网络分析是对社会关系结构及其属性加以分析的一套规范和方法。这篇文章旨在研究社会网络的异常检测问题。以社会网络分析技术为基础,在Matlab数据分析环境中利用Wavelab小波分析工具包中的平稳小波对社会网络的异常情况进行动态检测。首先归纳了平均通信量这一社会网络数据特征,搜集一组需要的真实数据,然后对数据进行平稳小波分解,并且运用梯度加权方法对分解结果进行了相应的处理,最终得到了较为理想的实验结果。 Social network analysis is a set of norms and method to analysis the social relations structure and its attributes. This paper aim to do research on the problem of social network change. Based on the social network analysis technology and in Matlab data analysis environment, use Wavelab wavelet analysis toolkit for the stationary wavelet to detect abnormal conditions of social network for dynamic measurement. First defines the average traffic characteristic of social network, search for a group of real data, decompose the real data for stationary wavelet, and use the rational gradient weighted method to process the decomposition results correspondingly, finally got the ideal experimental results.
出处 《电子设计工程》 2013年第13期31-33,共3页 Electronic Design Engineering
关键词 社会网络分析 异常检测 小波分解 梯度加权 social network analysis abnormal conditions wavelet decomposition gradient weighted
  • 相关文献

参考文献5

二级参考文献99

  • 1[1]D Donoho. De-noising via soft thresholding[R]. Department of Statistics,Stanford University,1992.
  • 2[2]D L Donoho,I M Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika,1994,81:425~455.
  • 3[3]Donoho David L. Denoising by soft thresholding [J]. IEEE Trans on Information Theory,1995,41(3):613~627.
  • 4[4]Donoho David L,Jhonstone lain M. Threshold selection for wavelet shrinkage of noisy data [A]. In: Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C],Baltimore,Maryland. 1994.
  • 5[5]S Grace Chang,Bin Yu,Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans on Image Processing,2000,9(9):1522~1531.
  • 6[6]M Lang,H Guo,J E odegend,et al. Nonlinear processing of a shift-invariant DWT for noise reduction[A]. In SPIE Conference on wavelet applications[C].1995.
  • 7[7]J C Pesquet,H Krim,H Carfanman. Time invariant orthonormal wavelet representations[A].Submitted to IEEE Trans[C].1994.
  • 8[8]M J Shensa.The discrete wavelet transform:wedding the a trous and Mallat algorithms[J].IEEE Trans.Information Theory,40:2464~2482.
  • 9[9]C Beylkin.On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer,1992,29(1):1716~1740.
  • 10[10]I M Johnstone,B W Silverman.Wavelet threshold estimators for data with correlated noise[J]. Journal of the Royal Statistical Society,1997,59:319~351.

共引文献147

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部