期刊文献+

Vasicek利率模型下具有随机障碍的动态保障年金的定价(英文) 被引量:4

Pricing Dynamic Guaranteed Funds with Stochastic Barrier under Vasicek Interest Rate Model
下载PDF
导出
摘要 带有动态保障的投资连接基金在整个投资期间提供了一些安全保障.文章考虑了随机利率环境下,具有随机障碍水平的动态保障年金的价格.当障碍水平设为某个零息债券的函数时,可以给出具有动态保障年金的价格. Dynamic guarantees in equity-indexed annuities provide a floor level of protection over the investment period. This article considers the price of the dynamic guaranteed funds with a stochastic barrier under stochastic interest rate environment. The explicit pricing formulas for the dynamic guaranteed funds can be obtained when the barrier is set to be a function of zero-coupon bond.
作者 董迎辉
出处 《应用概率统计》 CSCD 北大核心 2013年第3期237-245,共9页 Chinese Journal of Applied Probability and Statistics
基金 The project supported by the Natural Science Foundation of Jiangsu Province(2012165)
关键词 动态保障基金 远期中性测度 Vasicek随机利率 零息债券 Dynamic guaranteed funds, forward neutral measure, Vasicek stochastic interest rates, zero-coupon bond.
  • 相关文献

参考文献6

  • 1Bernard, C., Le Courtois, O.A. and Quittard-Pinon, F.M., Development and pricing of a new partic- ipating contract , North American Actuarial Journal, 10(4)(2006), 179-195.
  • 2Gerber, H.U. and Pafumi, G., Pricing dynamic investment fund protection, North American Actuarial Journal, 4(2)(2000), 28 -37.
  • 3Gerber, H.U. and Shiu, E.S.W., Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7(2)(2003), 60-77.
  • 4Gerber, H.U. and Shiu, E.S.W., From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24(1-2)(1999), 3-14.
  • 5Imai, J. and Boyle, P.P., Dynamic fund protection, North American Actuarial Journal, 5(3)(2001), 31-47.
  • 6Vasicek, O., An equilibrium characterization of the term structure, Journal of Financial Economics, 5(2) (1977), 177-188.

同被引文献16

  • 1GERBER H U,SHIU E S W. From ruin theory to pricing reset guarantees and perpetual put options[J]. Insurance:Mathematics and Economics, 1999,24(1-2) :3-14.
  • 2GERBER H U,PAFUMI G. Pricing dynamic investment fund protection[J]. North American Actuarial Journal ,2000,4(2):28-37.
  • 3GRISELDA D, GREGORY R. Pricing variable annuity guarantees in a local volatility framework[J]. Insurance:Mathematics and Economics, 2013, 53 (3) : 650-663.
  • 4ME RTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976,3..125-144.
  • 5KOU S G, WANG H. Option pricing under a double exponential jump diffusion model[J]. Management Science ,2004,50:1178-1192.
  • 6KOU S G,WANG H. First passage times of a jump diffusion process[J]. Advance of Applied Probability,2003,35:504-531.
  • 7DONG Y H ,WANG G J ,WU R. Pricing zero-coupon bond and its fair premium under a structural credit risk model with jumps[J]. Journal of Ap- plied Probability,2011,48:404-419.
  • 8邓国和,杨向群.多因素CIR市场结构风险的双指数跳扩散模型欧式期权定价[J].高校应用数学学报(A辑),2009,24(2):127-136. 被引量:4
  • 9邓国和,黄艳华.双指数跳扩散模型的美式二值期权定价[J].高校应用数学学报(A辑),2011,26(1):21-26. 被引量:6
  • 10姚怡,李帅芳,许威.跳扩散模型下亚式期权定价的柳树法研究[J].同济大学学报(自然科学版),2018,46(12):1761-1769. 被引量:13

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部