期刊文献+

随机波动率市场存在股票误价时的最优投资策略 被引量:5

Optimal Portfolio Strategies with Mispricing and Stochastic Volatility
下载PDF
导出
摘要 本文研究了随机波动率市场中存在股票误价(mispricing)时的最优投资组合选择问题.假设投资者的目标是最大化终端财富的期望幂效用;其可投资于无风险资产、市场指数和两支相同权益或近似度极高的股票,其中至少有一支股票存在误价;市场收益的波动率和股票系统风险由Heston随机波动率模型刻画.运用动态规划方法和Lagrange乘子法,分别得到不存在/存在有限卖空约束时,投资者的最优投资策略及最优值函数的解析式,并通过理论分析和数值算例,阐述了投资时间水平和价格随机误差对最优投资策略的影响. This paper investigates an optimal portfolio selection problem in a market with mispricing and stochastic volatility. The investor's objective is to maximize the expected power utility of the terminal wealth, and the financial market consists of one risk-free asset, one risky asset representing the market index, and a pair of stocks whose prices are mispriced. Meanwhile, the volatilities of the market index and system risk are described by Heston stochastic volatility model. Without/with limited short selling constraints, the closed-form expressions of the optimal strategies and the optimal value functions are derived by the dynamic programming approach and the Lagrange multiple method. Moreover, economic implications and numerical examples are provided to illustrate that how the investment horizon and mispricing error affect the optimal strategies.
出处 《应用概率统计》 CSCD 北大核心 2013年第3期261-274,共14页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金项目(70825002 71231008 71201173) 广东省高校优秀青年创新人才培育项目(育苗项目) GDUPS(2010) 广东省高等学校高层次人才项目(2011)资助
关键词 误价 随机波动率 最优投资策略 效用最大化 有限卖空约束 Mispricing, stochastic volatility, optimal strategy, utility maximization, limited short selling constraint.
  • 相关文献

参考文献17

  • 1Froot, K.A. and Dabora, E.M., How are stock prices affected by the location of trade? Journal of Financial Economics, 53(1999), 189-216.
  • 2Jurek, J.W. and Yang, H., Dynamic portfolio selection in arbitrage, 2006, Harvard University working paper.
  • 3Liu, J. and Longstaff, F.A., Losing money on arbitrage: optimal dynamic portfolio choice in markets with arbitrage opportunities, The Review of Financial Studies, 17(2004), 611-641:.
  • 4Duffle, D. and Epstein, L.G., Asset pricing with stochastic differential utility, The Review of Financial Studies, 5(1992), 411-436.
  • 5Liu, J., Peleg, E. and Subrahmanyam, A., Information, expected utility, and portfolio choice, Journal of Financial and Quantitative Analysis, 45(2010), 1221-1251.
  • 6Gatev, E., William, N.G. and Rouwenhorst, K.G., Pairs trading: performance of a relative-value arbitrage rule, The Review of Financial Studies, 19(2006), 797-827.
  • 7Engle, R.F. and Granger, C.W.J., Co-integration and error correction: representation, estimation, and testing, Econometrica, 55(1987), 251-276.
  • 8Granger, C.W.J., Some properties of time series data and their use in econometric model specification, Journal of Econometrics, 16(1981), 121-130.
  • 9Dumas, B., Kurshev, A. and Uppal, R., Equilibrium portfolio strategies in the presence of sentiment risk and excess volatility, The Journal of Finance, 64(2009), 579-629.
  • 10Brennan, M.J. and Wang, A., Asset pricing and mispricing, 2007, UCLA working paper.

同被引文献44

  • 1张言林.投资于实业项目且借款利率高于存款利率时的投资组合优化问题[D].济南:山东大学金融研究院,2005.
  • 2Rubinstein M. Nonparametric tests of alternative option pricing Models Using all reported trades and quotes on the 30 most active CBOE option classes from August 23,1976 through August 31,1978 [ J ]. Journal of Finance, 1985, (40) : 455-480.
  • 3Achwerth J C, Rubinstein M. Recovering probability dis- tributions from contemporaneous security prices [ J ]. Jour- nal of Finance, 1996 ( 51 ) .. 1611-1631.
  • 4Heston S L. A closed-form solution for options with sto- chastic volatility with applications to bond and currency options[ J]. Review of Financial Studies, 1993,6:327-34.
  • 5Stein E M, Stein J C. Stock price distributions with sto- chastic volatility: an analytic approach [ J ]. Review of fi- nancial Studies, 1991,4:725-752.
  • 6Hull J, White A. Pricing interest-rate derivative securities [ J ]. The Review of Financial Studies, 1990,3:573-592.
  • 7Hull J, White A. One factor interest rate models and the val- uation of interest rate derivative securities [ J ]. Journal of Financial and Quantitative Analysis, 1992,28:235-254.
  • 8Taksar M, Markussen C. Optimal dynamic reinsurance policies for large Insurance portfolios [ J ]. Finance and Stochastic,2003, 7:97-121.
  • 9Krylov R. Controlled Diffusion Process [ M ]. New York : Spring-Verlag, 1980:24-25.
  • 10Markowitz H M. Portfolio selection[J:. Journal of Finance, 1952, (7) : 77-91.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部