摘要
在群决策问题中,决策属性与专家偏好间存在的关联因素对决策方案的综合评价会产生影响。为了解决这一困难,给出新的梯形直觉模糊数的排序记分函数,引入模糊测度的概念,构建梯形直觉模糊数的关联有序加权算术平均算子和梯形直觉模糊数的关联有序加权几何平均算子,并讨论了它们的性质。在此基础上,提出了一个基于关联加权的梯形直觉模糊集成算子的群决策方法,并通过实例分析验证了该方法的可行性和有效性。
In the problems fluenced by the interaction of group decision making, among the decision making the synthetic values of the alternatives are inattributes and preference of experts. To solve the difficulty, firstly a new ranking function on trapezoid intuitionistic fuzzy number is presented. Secondly, by introducing the definition of fuzzy measure, the trapezoid intuitionistic fuzzy number ordered weighted arithmetic average operation with interaction and the trapezoid intuitionistic fuzzy number ordered weighted geometric average operation with interaction are proposed, whose properties are also discussed in the note. Finally, an approach for group decision making with grapezoid intuitionistic fuzzy number information is developed, and a practical example is provided to illustracte the developed approach and to verify its effectiveness.
出处
《广西大学学报(自然科学版)》
CAS
北大核心
2013年第3期738-745,共8页
Journal of Guangxi University(Natural Science Edition)
基金
国家自然科学基金资助项目(71163003)
教育部"新世纪优秀人才支持计划"专项(NCET-06-0756)
关键词
梯形直觉模糊数
集成算子
群决策
关联
trapezoid intuitionistic fuzzy number
aggregation operator: group decision making
iteration