期刊文献+

Nb(100)表面吸附氮气的第一性原理研究 被引量:2

Nitrogen adsorption on Nb(100) surface by using First-principles investigation
下载PDF
导出
摘要 为研究氮气在Nb(100)表面吸附过程中的物理机制,采用密度泛函理论和第一性原理方法对Nb(100)表面吸附氮气的功函数、几何结构、吸附能、电子结构和振动频率等性质进行研究。计算结果表明:当分子覆盖度为1.0 ML时,垂直的氮气易于吸附在Nb(100)表面的顶位;当分子覆盖度为0.5 ML时,桥位是氮气吸附于表面的最稳吸附位;当分子覆盖度为0.25 ML时,氮气则基本垂直吸附在顶位。分波态密度的研究发现,Nb(100)表面和氮气之间的相互作用主要通过Nb原子的d轨道与N原子的px,py轨道间的杂化。吸附分子中两氮原子间的振动频率强烈地依赖于其吸附结构,垂直吸附分子的N—N键的振动频率强于倾斜和平行吸附分子的。垂直吸附桥位和顶位的氮分子间原子振动频率分别是1 872~2 068 cm-1和2 173~2 204 cm-1。 In order to study the physical mechanism of N2 adsorption on Nb(100) surface, the density functional theory calculations and first principle investigation were performed to investigate the work function, structural properties, adsorption energies, electronic structures, and surface vibrational modes of N2 on Nb(100) surface. Results show that the upright N2 prefers to be absorbed on top sites at 1.0 ML coverage, while the bridge site is the most favorable site at 0.5 ML. At 0.25 ML, vertical N2 is absorbed on top sites steadily. Further analyses based on partial density of states reveal that the essential interaction between N2 and metal substrate is the hybridization of N Px, Pyorbital and the d-bands of surface niobium atoms. The frequencies of N2 exhibit the expected strong adsorption structure dependence: N2 molecules adsorbed in the vertical structures vibrate faster than those in parallel and tilted structures. In the modes of upright N2 on top and bridge sites, the adsorption ranges are 2173-2204 cm-l and 1 872 -2 068 cm-1, respectively.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2013年第3期769-776,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(51271061) 广西大学科研基金资助项目(XBZ130016) 广西大学广西有色金属及特色材料加工重点实验室开放基金资助项目(GXKFJ12-012)
关键词 Nb(100)表面 氮气 吸附能 电子结构 Nb (100) surface nitrogen adsorption energy electronic structure
  • 相关文献

参考文献28

  • 1UEHARA Y, FUJITA T, IWAMI M, et al. Single NbO nano-crystal formation on low temperature annealed Nb(001 ) sur- face [J]. Surface Science, 2001,472: 59-62.
  • 2LI Y, AN B, XU X, et al. Surface structure of niobium-dioxide overlayer on niobium(100) identified by scanning tunne- ling microscopy [J]. Journal of Applied Physics, 2001, 89: 4772.
  • 3AN B, XU M, FUKUYAMA S, et al. Nitrogen-induced structures of a Nb (100) surface investigated by LEED, Auger electron spectroscopy, and STM [ J]. Physical Review B, 2006, 73: 205401.
  • 4MARSOLAIS R M, MICHAUD M, SANCHE L. Near-threshold electronic excitation by electron impact of multilayer phy-sisorbed N2 and CO [J]. Physical Review A, 1987, 35: 607-618.
  • 5KRESSE G, FURTHERMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [ J]. Computational Materials Science, 1996, 6:15-50.
  • 6KRESSE G, FURTHERMULLER J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54: 11169-11186.
  • 7VANDERBILT D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism [ J ]. Physical Review B, 1990, 41: 7892-7895.
  • 8BLOCHL P E. Projector augmented-wave method [ J]. Physical Review B, 1994, 50 : 17953-17979.
  • 9PERDEW J P, BURKE K, ERNZERHORF M. Generalized gradient approximation made simple [ J ]. Physical Review Letter, 1996, 77: 3865-3868.
  • 10MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13: 5188-5192.

二级参考文献65

  • 1陈东,周理海,余本海,王春雷,高涛,张东玲.LaNi_(4.5)Al_(0.5)储氢合金固溶相的密度泛函研究[J].中国有色金属学报,2007,17(7):1160-1165. 被引量:3
  • 2Reilly,J.J.; Wiswall,R.H.Inorg.Chem.,1968,7:2254.
  • 3Zaluski,L.; Zaluska,A.; Strom-Olsen,J.O.J.Alloy.Compd.,1995,217:245.
  • 4Mulasa,G.; Delogub,F.; Cocco,G.J.Alloy.Compd.,2009,473:180.
  • 5Lee,H.Y.;Goo,N.H.;Jeong,W.T.;Lee,K.S.J.Alloy.Compd.,2000,313:258.
  • 6Janot,R.; Aymard,L.; Rougier,A.; Nazri,G.A.J.Phys.Chem.Solids,2004,65:529.
  • 7Janot,R.; Darok,X.; Rougier,A.; Aymard,L.; Nazri,G.A.J.Alloy.Compd.,2005,404:293.
  • 8Xue,J.S.; Li,G.X.; Hu,Y.Q.; Jun,D.; Wang,C.Q.; Hu,G.Y.J.Alloy.Compd.,2000,307:240.
  • 9Kohno,T.; Kanda,M.J.Electrochem.Soc.,1997,144:2384.
  • 10Kohno,T.; Yamamoto,M.; Kanda,M.J.Alloy.Compd.,1999,293:643.

共引文献8

同被引文献29

  • 1刘银河,刘艳华,车得福,徐通模.煤中灰分和钠添加剂对煤燃烧中氮释放的影响[J].中国电机工程学报,2005,25(4):136-141. 被引量:15
  • 2Morse M D,Geusic M E,Heath J R,et al. Surface reac- tions of metal clusters U II. Reactivity surveys with D2, N2 and CO[J]. Journal of Chemical Physics, 1985,83: 2293.
  • 3Zakin M R, Brickman R O, Cox D M, et al. Dependence of metal cluster reaction kinetics on charge state I. Reac-tion of neutral (Nbx) and ionic (Nb+, Nb+ ) niobium clusters with D2[J].Journal of Chemical Physics, 1988, 88:3555.
  • 4Fabbricatore P,Fernandes P, Gualco G C. Study of nio- bium nitrides for superconducting cavities[J]. Journal of Applied Physics, 1989,66 : 5944.
  • 5Farrell H H,Isaacs H S, Strongin M. The interaction of oxygen and nitrogen with the niobium (100) surface: II. Reaction kinetics [J]. Surface Science, 1973,38 : 31 - 52.
  • 6Dickey J M. The interaction of nitrogen with niobium [J]. Surface Science, 1975,50 : 515-526.
  • 7Usami S, Tominaga N, Nakajima T. AES-LEED study of adsorption of common gases on the (100) planes of W and Nb[J]. Vacuum,1977,27:11-16.
  • 8Tu M P, Mbaye K, Wartski L, et al. Characterization of thermally diffused superconducting niobium nitride [J]. Journal of Applied Physics, 1988,63 : 4586.
  • 9Joguet M, Lengauer W, Bohn M, et al. High-temperature reactive phase formation in the Nb-N system[J]. Journal of Alloys and Compounds, 1998,269 : 233-237.
  • 10Angelkort C, Lewalter H, Warbichler P, et al. Formation of niobium nitride by rapid thermal processing[J]. Spec trochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001,57 : 2077-2089.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部