期刊文献+

非线性多智能体网络的分布式包容控制 被引量:3

Distributed Containment Control of Nonlinear Multi-Agent Networks
下载PDF
导出
摘要 针对具有本质非线性动态的多智能体网络,研究分布式包容控制问题。假设只有部分个体已知领航者信息,依据相对位置和速度信息设计分布式控制律。基于代数图论、矩阵理论和Lyapunov稳定性分析方法,得出非线性网络实现渐近包容控制的充分条件。当跟随者之间有向强连通且每个跟随者都至少存在一个领航者与其通信,可选取合适的控制增益使得跟随者渐近收敛到由多个领航者所围成的静态凸包中。仿真实例验证了理论分析的正确性和有效性。 Distributed coordinated containment control problem is studied for multi-agent net- works with inherent nonlinear dynamics. Distributed control law is designed according to relative positions and velocities assuming that only a subset of agents know information of leaders. Suffi- cient conditions are developed to achieve asymptotic containment control based on algebraic graph theory, matrix theory and Lyapunov stability analysis method. Followers can be driven into sta- tionary convex hull asymptotically, which is formed by leaders with suitable control gain when followers are strongly connected and every follower communicate with a leader at least. At last two simulation examples are given to prove the correctness and validity of the theoretical analysis.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2013年第2期63-68,共6页 Complex Systems and Complexity Science
关键词 非线性动态 多智能体网络 分布式包容控制 nonlinear dynamics multi-agent network distributed containment control
  • 相关文献

参考文献13

  • 1Daneshfar F, Bevrani H. Multi-agent systems in control engineering: a survey[J]. Journal of Control Science and Engi neering, 2009, 28(1):1-12.
  • 2Olfati-Saber R, Fax A J, Murray R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1) :215 - 233.
  • 3Ren W, Cao Y C. Distributed Coordination of Multi-Agent Networks[M]. London: Springer, 2010:3 -34, 99 -142.
  • 4Yu W W, Cao G R, L J H. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45 (2) : 429 - 435.
  • 5Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2004, 51(10): 2074-2087.
  • 6Chen G R. Stability of nonlinear system[M]//Chang K. Encyclopedia of RF and Microwave Engineering. New York: Wiley, 2004.. 4881 - 4896.
  • 7Yu W W, Chen G R, Cao M, et al. Second-order consensus for multi-agent systems with directed topologies and nonli- near dynamics[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B1 Cybernetics, 2010, 40 (3) : 881 - 891.
  • 8Li Z K, Liu X D, Fu M Y. Global consensus control of lipschitz nonlinear multi-agent systems[C]//Preprints of the 18th IFAC World Congress. Milano, Italy, 2011:10056-10061.
  • 9Song Q, Cao J D, Yu W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control [J]. Systems b- Control Letters, 2010, 59 (9): 553-562.
  • 10Mei J, Ferrari-Trecate G, Egerstedt M, et al. Containment control in mobile networks[J]. IEEE Transactions on Auto matic Control, 2008, 53(8):1972- 1975.

同被引文献34

  • 1胡寿松.自动控制原理[M].5版.北京:科学出版社,2006.
  • 2Reynolds C W. Flocks, herds and schools a distributed behavioral model[J]. Computer Graphics, 1987,21 (4) :25.
  • 3Vicsek T, Czirok A, Ben Jacob E, et al. Novel type ofphase transition in a system of self-driven particlesEJ~ 75(6) :1226 - 1229.
  • 4Jadbabaie A, Lin J, Morse A S. Coordination of groupsof mobile agents using nearest neighbor rules[J]. IEEETranson Automatic Control, 2003,48(6) :988 - 1001.
  • 5Moreau L. Stability of multi agent systems with timedependent communication links[J]. IEEE Trans onAutomatic Control, 2005,50(2):169 - 182.
  • 6Ren W, Beard R W. Consensus seeking in multi agentsystems under dynamically changing interactiontopologies[J]. IEEE Trans on Automatic Control,2005,50(5) :655 - 661.
  • 7JiM, Ferrari-Trecate G, Egerstedt M, et al. Containment control in mobile networks[J]. IEEE Transactions onAutomatic Control, 2008,53 (8) 1972 - 1975.
  • 8Dong X W, Meng F L, Shi Z Y, et al. Output containment controlfor swarm systems with general lineardynamics: a dynamic output feedback ap- proach[J]. Systems & Control Letters,2014(71): 31- 37.
  • 9Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time delays[J]. IEEE Transaction on Auto- matic Control,2004,49(9) :1520 - 1533.
  • 10Yu W W,Chen G R,Cao M. Some necessary and sufficient conditions for second-order consensus inmulti-agent dynamical systems[J]. Automat- ica,2010,46(6) :1089 - 1095.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部