期刊文献+

基于自组织数据挖掘的铁路客运量预测方法研究 被引量:4

Research on Forecast Method of Railway Passenger Transport Volume based on Group Method of Data Handling
下载PDF
导出
摘要 由于传统的预测方法难以对影响铁路客运量变化的因素进行全面考虑,其预测精度不高。选择影响铁路客运量变化的因素:经济社会发展的原生性需求、铁路自身供给能力、不同交通方式、客运价格和旅行费用、运输服务质量等,建立基于自组织数据挖掘的铁路客运量预测模型。通过算例进行验算结果表明,自组织数据挖掘建模预测方法在变量多、数据少、普通的建模预测方法难以胜任建模任务的情况下,可以得到较满意的结果,适宜进行多因素的铁路客运量预测。 For traditional forecast model is difficult to carry overall consideration on factors influencing the change of railway passenger transport volume,so it has low forecast precision.The factors influencing the change of railway passenger transport volume should be selected,which including original demand of economic social development,railway self-supply capacity,different traffic mode,passenger transport cost and traveling cost and transport service quality,and the forecast model of railway passenger transport volume based on group method of data handling(GMDH) should be established.Through calculation by example,the result shows that,under the condition of common model establishment forecast method with many variables and less data is difficult to establish model,the forecast method based on GMDH could achieve satisfied result and suitable to take the forecast of railway passenger transport volume with multi-factors.
作者 何永占
出处 《铁道运输与经济》 北大核心 2013年第6期28-31,共4页 Railway Transport and Economy
关键词 铁路 客运量预测 自组织数据挖掘 模型 Railway Forecast of Passenger Transport Volume GMDH Model
  • 相关文献

参考文献8

  • 1Madala H.R., Ivakhnenko A.G.. Inductive Leafing Algorithms for Complex Systems Modeling [M]. London: CRC Press. Inc, 1994.
  • 2Ivakhnenko A.G.. The Review of Problems Solvable by Algorithms of the Group Method of Data Handling(GMDH) [J]. Pattern Recognition and Image Analysis, 1995, 5(4): 527-535.
  • 3Ivakhnenko A.G.. Heuristic Self-organizing in Problems of Engineering Cybernetics[J]. Automatic, 1967(6): 207-219.
  • 4Ivakhnenko A.G., Krotov. G.I., Strokva.T.I.. Self-organization of Dimensionless Harmonic Exponential and Correlation Predicting Models of Standard Structure[J]. Soviet Automatic Control, 1984, 17(4): 15-26.
  • 5陈川,何跃,贺昌政.基于自组织数据挖掘方法的经济预警研究[J].成都信息工程学院学报,2005,20(1):101-106. 被引量:4
  • 6王华,贺昌政,俞海.新股上市定价的自组织模型[J].电子科技大学学报(社科版),2004,6(1):27-30. 被引量:1
  • 7黄敏.自组织数据挖掘在股票市场中的应用研究[D].成都:电子科技大学,2003.
  • 8易顺民,赵文谦,蒲迅赤.河流水环境有机污染物的自组织预测模型及应用[J].环境科学研究,1999,12(4):46-49. 被引量:13

二级参考文献15

共引文献15

同被引文献49

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部