期刊文献+

乳腺X线图像肿块建模与分割 被引量:1

Mass Modeling and Segmentation in Mammogram
下载PDF
导出
摘要 提出了一种基于模型分析与均值漂移聚类的乳腺肿块分割方法.该方法根据肿块的临床特征表现建立了肿块的数学模型,并通过多重滤波实现肿块的准确定位.在此基础上,结合均值漂移算法获得的像素点集合,筛选出初始肿块.最后利用无边缘活动轮廓模型准确分割出肿块.实验采用通用的MIAS数据库进行算法性能测试,结果表明本文方法在保证较低假阳性率的同时,肿块检测真阳性率高于形态学成分分析方法.此外,本文方法分割出的肿块边界完整,可满足临床检验与诊断需求. A novel method of mass segmentation in mammogram is proposed in this paper. First, a mathematical model is presented based on the clinical features of the mass and a multi-filtering method is used to detect the mass' location. Then, according to the result of clustered pixels, which is got by mean shift algorithm, rough handling masses could be obtained. Finally, the active contour without edge model is applied to refine the rough-wrought masses. Experiments implemented on the public MIAS database indicate that the proposed method can achieve better true positive rate than the morphological component analysis method with low false positive rate. In addition, the proposed segmentation method could emerge complete boundary, which could meet the clinical examination and diagnosis demand.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第5期495-499,522,共6页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61271305 61201363 60972093) 国家教育部高等学校博士学科点专项科研基金资助课题(20110009110001) 中央高校基本科研业务费专项资金资助课题(2011JBM003 2012JBM012) 北京交通大学人才基金资助课题(2012RC036)
关键词 乳腺X线图像 乳腺癌早期检测 肿块分割 数学建模 均值漂移 无边缘活动轮廓模型 mammogram breast cancer early diagnosis mass segmentation mathematical modeling mean shift active contour without edge model
  • 相关文献

参考文献14

  • 1American Cancer Society figures 2009 - 2010 [R]. Society, 2010.
  • 2Breast cancer facts and Atlanta: American Cancer Cancer Research U. K. Breast cancer mortality statistics 2010 [EB/OL]. [2012-02-01]. http: //info. caneerres- earchuk, org/cancerstats/types/breast/mortality/index. htm. Globocan 2008.
  • 3Breast cancer incidence and mortality worldwide[ EB/OL]. [ 2012-02-01]. http: //globocan. iarc. fr/factsheets/cancers/breast, asp.
  • 4Biswas S K, Mukherson D P. Recognizing architectural distortion in mammogram: a multiscale texture modeling approach with GMM [J]. IEEE Transactions on Biomedical Engineering, 2011,58 (7) : 2023 - 2030.
  • 5National Cancer Institute. National cancer Institute fact sheet: improving methods for breast cancer detection and diagnosis [EB/OL]. [2012-02-01]. http://www. cancer, gov/cancertopics/ screening/breast.
  • 6Guliato D, Rangayyan R M, Carvalho J D, et al. Polygonal modeling of contours of breast tumors with the preservation of spicules ]-J]. IEEE Transactions on Biomedical Engineering, 2008,55 (1) : 14 - 20.
  • 7Eltonsy N H, Tourassi G D, Elmaghraby A S. A concentric mophology model for the decection of masses in mammography [J]. IEEE Transactions on Medical Imaging, 2007,26 (6) : 880 - 889.
  • 8Gao X B, Wang Y, Li X L, et al. On comhining mor- phological component analysis and concentric morphology model for mammographic mass detection [J]. IEEE Transactions on Information Technology in Biomedicine, 2010,14(2) :266 - 273.
  • 9Xu S Z, Pei C D. Hierarchical matching for automatic detection of masses in mammograms[C] // Proceedings of 2011 International Conference on Electrical and Control Engineering (ICECE). Yichang: IEEE Press, 2011:4523 -4526.
  • 10Sample J T. Computer assisted screening of digital mammogram images [R]. Baton Rouge, USA: Louisiana State University, 2003.

二级参考文献22

  • 1Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2000. 142-149.
  • 2Comaniciu D, Ramesh V. Mean shift and optimal prediction for efficient object tracking. In: Mojsilovic A, Hu J, eds. Proc. of the IEEE Int'l Conf. on Image Processing (ICIP). 2000. 70-73.
  • 3Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2001. 438-445. http://citeseer.csail.mit.edu/comaniciu01variable.html.
  • 4Comaniciu D, Meer P. Mean shift analysis and applications. In: Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 1999. 1197-1203. http://citeseer.ist.psu.edu/comaniciu00realtime.html.
  • 5Bradski GR. Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal, 1998. http://developer. intel.com/technology/itj/q21998/articles/art_2.htm.
  • 6Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.
  • 7Comaniciu D. An algorithm for data-driven bandwidth selection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(2):281-288.
  • 8Comaniciu D. Nonparametric information fusion for motion estimation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2003. 59-66. http://csdl.computer.org/comp/proceedings/cvpr/2003/1900/01/190010059abs.htm.
  • 9Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-575.
  • 10Collins RT. Mean-Shift blob tracking through scale space. In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR). 2003. 18-20. http://csdl.computer.org/comp/proceedings/cvpr/2003/1900/02/190020234abs.htm.

共引文献87

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部