期刊文献+

高效率节能车点火时刻的最优设计

Optimal Ignition Planning of High Energy-Efficient Car
下载PDF
导出
摘要 针对高效率节能车点火时刻的最优设计问题,本文作者提出了节能车点火设计问题的目标函数和约束条件,并将所涉及的约束条件分为强约束条件和弱约束条件,易于选择惩罚项加权系数,并阐述了基于粒子群算法的最优点火时刻优化算法.仿真实验结果表明:在400m标准跑道总路程为2 000m的情况下,最优的点火次数为13次,同时也给出了具体的点火时刻、点火位置和危险的驾驶区域,从而起到了智能辅助驾驶的作用. This paper addresses the problem on fire time of high energy-efficient car. the difficulty of designing objective function of ignition, the mathematical model of car was proposed and the ignition objective function with strong constraint condition conditions was analyzed. With the aid planning could be realized, which ar moment and the exact fire position in the valuable information to the driver of particle swarm optimization (PSO), the e composed of the number of ignition, the whole driving process. Results of this who drives the high energy-efficient car. To reduce kinematics and weak optimal ignition the specific fire research provide
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期586-589,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金项目资助(60217289 61011130163 61004059) 新世纪优秀人才计划项目(NCET-09-0045) 北京理工大学研究生创新基金资助项目(CX0429)
关键词 高效率节能车 粒子群算法(PSO) 点火时刻 约束条件 high-efficient car particle swarm optimization ignition timing strong constraintconditions
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [C]//Proceedings of IEEE International Conference onNeural Networks. USA.. Piscataway, IEEE, 1995: 1942 - 1948.
  • 2Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C],//Proceedings of the Sixth In- ternational Sysposium on Micro Machine and Human Science. Nagoya, Japan: [s. n. ], 1995..39 -43.
  • 3Zhang J R, Zhang J, Lok T M, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training [J] . Applied Mathematics and Computation, 2007,185(2) 39 - 43.
  • 4Guo Q J, Yu H B. A hybrid PSO-GD based intelligent method for machine diagnosis [J]. Digital Signal Processing, 2006,16(4) ..402 - 418.
  • 5Parrott D, Li X D. Locating and tracking multiple dynamics optima by a particle swarm model using speciation[J]. IEEE Transactions on Evolutionary Com- putation, 2006,10(4) :440 - 458.
  • 6Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system[J]. IEEE Transactions on Energy Conversion, 2004,19(2) .. 384 - 391.
  • 7Shi Y H, Eberhart R C. A modified particle swarm optimizer[C] ffProceedings of IEEE World Congress onComputational Intelligence. Alaska, USA IEEE, 1998 .. 69 -73.
  • 8Clerc M, Kenndey J. The particle swarm-exploration, stability, and convergence in a multidimensional complex space[J]Proceedings of IEEE Transactions on Evolutionary Computation, 2002, 6 (1) .. 58 - 73.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部